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Abstract 
      The interplay between host cell genetics and Epstein-Barr virus (EBV) infection contributes to the 
development of nasopharyngeal carcinoma (NPC). Understanding the host genetic and epigenetic 
alterations and the influence of EBV on cell signaling and host gene regulation will aid in understanding 
the molecular pathogenesis of NPC and provide useful biomarkers and targets for diagnosis and therapy. 
In this review, we provide an update of the oncogenes and tumor suppressor genes associated with NPC, 
as well as genes associated with NPC risk including those involved in carcinogen detoxification and DNA 
repair. We also describe the importance of host genetics that govern the human leukocyte antigen (HLA) 
complex and immune responses, and we describe the impact of EBV infection on host cell signaling 
changes and epigenetic regulation of gene expression. High-power genomic sequencing approaches are 
needed to elucidate the genetic basis for inherited susceptibility to NPC and to identify the genes and 
pathways driving its molecular pathogenesis. 
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      Nasopharyngeal carcinoma (NPC) is an epithelial cancer whose 
etiology is associated with several factors, including infection with 
the ubiquitous human herpesvirus Epstein-Barr virus (EBV), host 
genetics, and environmental exposures. Although NPC is rare in 
most parts of the world, it is highly prevalent in southern Chinese 
populations. EBV plays an important role in the development of NPC, 
as most NPC tumors harbor this virus. This intimate relationship 
is attributed to the interaction of EBV with host cell genes for NPC 
development. It is now believed that EBV either selectively infects 
host cells with genetic alterations such as allelic loss[1] and aberrant 
cyclin D1 overexpression[2] or allows such cells to persist and 
eventually transform into cancerous cells.
      Previous approaches for deciphering the molecular genetic basis 
for NPC included comparative genomic hybridization (CGH) and loss 
of heterozygosity (LOH) studies to determine copy number gains 
and losses, epigenetic studies to identify critically silenced candidate 
genes, and functional studies to identify critical regions and candidate 

genes associated with NPC tumorigenesis. Expression profiling and 
transcriptome analysis have also identified several candidate genes 
and signaling pathways of interest. These studies have revealed both 
oncogenes (Table 1) and tumor suppressor genes (Table 2) that are 
important in NPC development, including genes that are involved 
in transcriptional regulation; cell adhesion, growth, proliferation, 
migration, and invasion; cell cycle and apoptosis; angiogenesis; and 
epithelial-mesenchymal transition and metastasis. 
      More recently, genome-wide association studies (GWAS) and 
single nucleotide polymorphism (SNP) analyses have identified 
candidate genes and aberrant pathways of importance in NPC. 
Multiple genetic regions were identified in familial and case-control 
studies (Table 3), indicating the possibility of multi-factorial risk factors 
and the combination of common low penetrance alleles having a role 
in NPC genetic risk.
      Understanding the molecular pathogenesis of EBV infection 
and host gene aberrations will aid in our strategies for diagnostics 
and treatment of NPC. Human leukocyte antigen (HLA) affects 
host responses to EBV infection through viral antigen presentation. 
Inhibition of HLA expression may facilitate tumor cell evasion of the 
normal host immunosurveillance. Several studies support the link 
between the HLA complex, genetic susceptibility to NPC, and immune 
response to EBV (Table 4). Environmental exposure to carcinogens 
also plays a role in NPC development. Many studies have examined 
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Table 1. Oncogenes involved in nasopharyngeal carcinoma (NPC) development 

the link between NPC risk and carcinogen metabolism (Table 5) or 
DNA repair (Table 6). 
      NPC tumors characteristically contain large numbers of infiltrating 
lymphocytes, and EBV-induced inflammation is often associated with 
STAT3 activation. Latent membrane protein 1 (LMP1) is reported to 
sensitize NPC cells to genotoxic drugs. Nuclear factor kappaB (NF-
κB) signaling is associated with NPC tumor formation[3]. In this review, 
we discuss the associations of NPC with HLA and inflammation and 
with aberrant cell signaling. We also describe in brief next-generation 
sequencing (NGS) approaches to better understand the associations 
between host genetics and EBV infection. 

HLA and Inflammation 
      Host immune responses are important in determining the 
consequence of viral infection–related cancers. EBV plays an integral 
role in tissue inflammation and NPC development. The tumorigenic 

potential of viral infections is associated with their carriage of genes 
associated with cell transformation and their ability to induce chronic 
inflammation. The HLA system plays a central role in viral antigen 
presentation, which is key to determine the outcome of the host 
immune response to this lifelong viral infection. HLA genes are 
believed to play a role in NPC development because they have a 
functional impact on the innate and adaptive immune responses 
against the viral etiologic agent, EBV. NPC cells expressing specific 
EBV proteins, which are processed and the antigen presented in 
association with HLA class I alleles, may be recognized by EBV-
specific CD8+ cytotoxic T cells. Some evidence supports the 
hypothesis that EBV may down-regulate the expression of HLA alleles 
and result in immune escape of NPC cancer cells by decreasing the 
recognition of EBV-expressing cancer cells[4-6].
      The genetic association of the major histocompatibility complex 
(MHC) region, in which HLA resides, is validated by a catalog of 
GWAS studies with numerous diseases and conditions including 

Gene name Tumor-associated functions

AKT (v-akt murine thymoma viral oncogene homolog 1) Induces metastasis[60]

BCAT1 (branched chain amino acid transaminase 1, cytosolic) Induces cell proliferation, migration, and invasion[61]

BCL2 (B-cell CLL/lymphoma 2) Inhibits apoptosis[62-64]

CCND1 (cyclin D1) Promotes cell cycle G1-S transition through regulation of pRb[65-67]

DeltaNp63/TP73L [tumor protein p73-like, p63 splicing variants lacking
   NH(2)-terminal transactivating domain]

Regulates Notch signaling, cell proliferation, and cell death[68-70]

EGFR (epidermal growth factor receptor) Regulates cell signaling[71-75]

EIF4E (eukaryotic translation initiation factor 4E) Promotes cell cycle progression by up-regulation of c-Myc and
   MMP9[76]

EVI1 (ecotropic viral integration site 1) Regulates chromatin remodeling[77]

FGF3/Int-2 (fibroblast growth factor 3) Promotes cell growth and tumor growth and invasion[78]

ERBB2 (v-erb-b2 erythroblastic leukemia viral oncogene homologue 2) Controls cell proliferation and angiogenesis[74,79]

HRAS (Harvey rat sarcoma viral oncogene homolog) Induces cell cycle progression, regulates cell motility, and plays a role
   in cell signaling[72,80,81]

ID1 (inhibitor of DNA binding 1; dominant negative helix-loop-helix
   protein)

Regulates cell growth and senescence[82]

IL8 (interleukin-8) Promotes metastasis through activation of epithelial-mesenchymal
   transition and Akt[83]

MACC1 (metastasis-associated in colon cancer 1) Induces cell proliferation, migration, invasion, and colony formation[84]

MDM2 (MDM2 oncogene, E3 ubiquitin protein ligase) Interacts with p53, to regulate its ability to control cell cycle and
   apoptosis[85,86]

MET (Met proto-oncogene) Regulates cell proliferation and is involved in cancer signaling
   pathways[87,88]

MYC (v-myc avian myelocytomatosis viral oncogene homologue) Regulates transcription of BMI1; induces cell proliferation, apoptosis,
   cell cycle progression; increases the radiotolerance of cancer
   cells[64,78,80,89,90]

PIK3CA (phosphoinositide 3-kinase, catalytic, alpha polypeptide) Activates the activities of critical downstream cell signaling partners and
   enhances invasion[72,91-93]

SATB1 (special AT-rich-binding protein 1) Decreases cell proliferation and resistance to apoptosis[94]

SP1 (SP1 transcription factor) Regulates transcription of BMI1[89]

TNFAIP3 (tumor necrosis factor, alpha-induced protein 3) Inhibits apoptosis and negatively regulates inflammatory response[95]
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Table 2. Tumor suppressor genes involved in NPC development

IGFBP-6 (insulin-like growth for binding protein 6) Inhibits the proliferation, invasion, and metastasitic abilities; increases the
   apoptosis events of NPC cells; associates with the expression of EGR-1[113]

IRF8 (interferon regulatory factor 8) Affects host defense, cell growth, differentiation, immune regulation and inhibits
   clonogenicity[114]

LARS (leucyl-tRNA synthetase) Catalyzes ATP-dependent ligation of L-Leu to tRNA (leu) and is inactivated in NPC
   by both genetic and epigenetic mechanisms[115]

LTBP2 (latent transforming growth factor beta binding
   protein 2)

Reduces focal adhesion and cell migration, suppresses angiogenesis[116]

MIPOL1 (mirror-image polydactyly 1) Arrests cell cycle transition[117]

MMP19 (matrix metallopeptidase 19) Breaks down ECM to affect cell proliferation, migration, and
   adhesion[118]

PCDH10 (protocadherin 10) Mediates cell-cell adhesion, induces apoptosis, and be involved in cell signaling[119]

PTPRG (protein tyrosine phosphatase receptor type G) Arrests cell cycle, involves cell-ECM interactions, dephosphorylates
   kinases[120]

RASSF1A [ras association (RalGDS/ AF-6) domain family 1] Involves cell cycle arrest, induces apoptosis, involves DNA repair, inhibits
   accumulation of cyclin D1[121]

THY1/CD90 (Thy-1 cell-surface antigen) Involves suppression of tumor formation, cell proliferation, and invasion[122,123]

TSLC1/CADM1 (tumor suppressor in lung cancer 1/cell
   adhesion molecule 1)

Inhibits cell growth and induces apoptosis[124,125]

WIF1 (WNT inhibitory factor 1) Inhibits WNT proteins, involves protein-tyrosine kinase activity[126]

ZNF382 (KRAB zinc finger protein) Inhibits proliferation, induces apoptosis[127]

Gene name Tumor-associated functions

ADAMTS9 (A disintegrin and metalloproteinase with
   thrombospondin motifs 9)

Inhibits angiogenesis by reduction of MMP9 and vascular endothelial growth factor 
A (VEGFA) expression[96,97]

ADAMTS18 (A disintegrin and metalloproteinase with
   thrombospondin motifs 18)

Activates diverse cell surface molecules, inhibits both anchorage-dependent and
   -independent growth[98]

BLU/ZMYND10 (zinc finger, MYND-type containing 10) Involves inhibition of angiogenesis, transcription factor stress response, and
   tumor suppression[99-101]

BRD7 (bromodomain containing 7) Regulates transcription and causes cell cycle arrest[102]

CDH1 (Cadherin 1, type 1, E-cadherin) Inhibits proliferation, invasion, and metastasis[103]

CDKN2A/p16 (cyclin-dependent kinase inhibitor 2A) Inhibits CDK4 kinase and causes cell cycle arrest[103]

CMTM3 (CKLF-like MARVEL transmembrane domain-
   containing 3)

Involves cellular chemokine signaling[104]

CRIP2 (cysteine-rich intestine protein 2) Inhibits angiogenesis by transcriptional repression[105]

CRYAB (alpha B-crystallin) Suppresses tumorigenesis and epithelial-mesenchymal transition (EMT) by
   associating with adherens junction[106]

DLC1/ARHGAP7 (deleted in liver cancer 1) Involves cell cytoskeleton organization, activates GTPase, signal transduction, and
   cell adhesion, inhibits cell invasion[107]

DLEC1 (deleted in lung and esophageal cancer 1) Inhibits cell growth and invasiveness[108]

DUSP6 (dual specificity phosphatase 6) Suppresses cell proliferation, induces apoptosis, inhibits EMT by negatively
   regulating the activity of ERK[109]

FBLN2 (fibulin 2) Interacts with extracellular matrix (ECM) proteins; inhibits cell proliferation,
   migration, and invasion; suppresses angiogenesis[110]

FBLN3 (EGF-containing fibulin-like extracellular matrix protein
   1)

Suppresses migration and invasion of NPC cells and involves the regulation of Akt
   signaling pathways[111]

GADD45G (growth arrest and DNA damage-inducible,
   gamma)

Involves DNA damage response, inhibits cell growth and colony formation[112]

inflammatory, autoimmune, and infectious diseases; cancer; drug-
induced hypersensitivity; and neuropsychiatric disease[7] . Historically, 

the first association of HLA alleles with NPC was reported in 1974[8]. 
For EBV-associated tumors such as NPC, previous candidate gene 
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studies have shown a strong linkage between HLA associations 
and NPC risk[8-12]. These findings have been verified in more recent, 
large-scale GWAS in different populations[13-15].  Linkage analysis and 
several recent SNP studies indicate a strong association between 
HLA-associated genes and NPC risk[16-19]. The association of the 
HLA class I genes and risk of NPC development was reported 
in different ethnic Chinese populations including Singaporean 
Chinese[12,20], Taiwanese[11,16,21,22], and southern Chinese[9,23]. The 
HLA class I alleles HLA-A2 and HLA-B46 are most consistently 
associated with increased susceptibility for NPC in high-risk regions 
and among the Chinese population. On the other hand, HLA alleles 
HLA-A11, HLA-B13, HLA-B27, and HLA-A31 confer protective effects 
for NPC risk in high-risk areas. More details and comprehensive 
information regarding HLA associations with NPC are provided in 
several well-written reviews on NPC genetic predisposition[24-26]. 
However, the distribution of frequencies of HLA alleles or haplotypes 
varies among high-/intermediate-/low-risk regions and resulted in 
different, sometimes inconsistent, and even opposite associated 
alleles in different geographic areas. Such an example is HLA-A2, 
which is associated with lower NPC risk in low incidence areas[27,28]. 
This phenomenon may be due to an alternative hypothesis that 
HLA may only be a genetic marker, which is in close linkage 
with another NPC predisposition locus. The HLA region is highly 

polymorphic with enormous sequence diversity and gene density, 
and the genes are in extensive linkage disequilibrium. Thus, this 
complexity hinders the hunt for causal variants for NPC development. 
Standard molecular tools such as polymerase chain reaction-
based methods for genotyping, including MassArray Sequenom, 
Taqman assay, and the GoldenGate Assay, have limited capacity, 
and probe designs are restricted by this difficulty for the HLA region. 
As most studies focus on 4-digit coding variation, the role of some 
functional non-coding variants within the HLA region may not have 
been addressed. There is a need for studying the role of non-coding 
variants of HLA and non-HLA genes and for identifying novel rare 
and common variants in NPC genetic susceptibility by applying deep 
resequencing approaches with the technological advances in NGS. 
To elucidate functional mechanisms and disease pathogenesis, it 
is crucial to identify the causal variants associated with NPC. HLA 
undoubtedly plays a substantial role in genetic predisposition for 
NPC development. Findings from previous studies that examined the 
specific EBV epitopes from LMP1 and LMP2 recognized by T cells in 
association with specific HLA alleles support the hypothesis that HLA 
alleles associated with NPC risk affect the processing and antigen 
presentation[6,29-31]. Specific HLA class I alleles and amino acid 
variants (HLA-A*11:01 allele, HLA-B*13:01, and B*55:02) in the HLA 
class I peptide-binding groove were observed to confer higher NPC 

Table 3. Familial and case-control genomic studies in NPC

Study type Location Details Results

Familial Guangzhou 20 families
382 microsatellite markers covering 22 auto-
   somes with average marker density of 10 cM 

Linkage to chromosome (chr) 4p15.1-q12 (14.21 cM)[128]

Familial Hunan 18 families
20 microsatellite markers from chr 4p15-q12
   (5), chr 3p (8), chr 9p (7)

Linkage to chr 3p21.3-21.2 (13.6 cM)[129]

Familial Guangzhou 15 families
800 microsatellite markers covering 22 auto-
   somes with average marker density of 5 cM

Linkage to chr 5p13 (17 cM)[39]

Case-control Guangxi 350 NPC cases, 634 controls chr 4p not confirmed[130]

Study of chr 4p15.1-q12 region with 34
   microsatellite markers

Case-control Malaysia 111 NPC cases, 260 controls
Genome-wide association study (GWAS) with
   500,000 tag single nucleotide
   polymorphisms (SNPs)

Identified SNP in intron 3 of ITGA9 (integrin, α9) on 3p21 (40 kb)[15]

Case-control Taiwan 277 NPC cases, 285 controls
GWAS with 480,000 SNPs; biological role for
   GABBR1 in NPC

Linkage to HLA region at 6p21.3 in HLA-A & F/GABBR1 (GABA
   receptor 1) genes[14]

Case-control Guangzhou,
Guangxi 

1,583 NPC cases, 1,894 controls
GWAS with 464,000  autosomal SNPs

Linkage to 13q12 (TNFRSF19, TNF receptor superfamily 19), 3q26
  (MDS1-EVI1), 9p21 (CDKN2A-CDKN2B) and reconfirm HLA on chr 6[13]

Case-control Hong Kong 360 NPC cases, 360 controls
MassArray Sequenom SNP study with 233
   SNPs confined to 6p

GABBR1, HLA-A, and HCG9 were highly associated with NPC in single-
   marker association studies; microdeletions in GABBR1 and NEDD9
   (neural precursor cell expressed developmentally down-regulated 9)
   were detected[131]
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risk[10]. However, additional studies are needed to clarify how the HLA 
class I antigen recognition groove and the EBV epitopes interact. HLA 
class I alleles possess another function related to innate immunity 
which modulates the natural killer (NK) cells that kill cancer cells. 
HLA class I molecules induce the activation of killer-immunoglobulin-
like receptors (KIRs), which in turn inhibit the function of NK cells. 
NPC risk is higher for EBV-seropositive individuals carrying at least 
five activating KIRs compared with those without activating KIRs[32]. 
By revealing the detailed insights into the HLA functional variants for 
NPC, potential novel therapeutic options will be developed.

EBV Latency Genes Induce Host Cell
Signaling Changes 
      EBV usually undergoes different types of latency in various cell 
types. After EBV infection in the epithelial cell, EBV usually enters 
type II latency and expresses a specific panel of latent proteins 
including the LMP1, LMP2, and EBNA1. Although EBV infection is 
frequently observed in NPC, the contribution of these oncogenic 
latent proteins to the pathogenesis of NPC is not as clear as that in 
the B-cell transformation.  
      Increasing evidence supports the involvement of LMP1 in altering 

host oncogenic signaling including the NF-κB, Akt, JNK1/c-jun, and 
MEK/ERK-MAPK pathways in different cancers such as NPC. The 
C-terminal activating region 2 (CTAR2) of LMP1 is important for 
activation of the NF-κB signaling via the host cell proteins TRAF6 and 
TAK1[33,34]. LMP1 induces NF-κB–associated transcriptional activation 
to drive the expression of TNFAIP2 and, thus, promotes migration[35]. 
On the other hand, LMP1 also showed inhibitory effects on tumor 
suppressive signaling pathways, including the LKB1-AMPK pathway. 
The LMP1 CTAR1 can activate the MEK/ERK-MAPK signaling 
pathway, resulting in phosphorylation of LKB1 and subsequent 
suppression of AMPK activity[36]. LMP1 was also found to induce the 
epithelial-mesenchymal transition (EMT) via the regulation of Twist, 
a master transcriptional regulator in embryogenesis and metastasis, 
through the NF-κB signaling pathway. The induction of EMT by Twist 
contributes to increased cell motility and invasiveness and, thus, 
resulted in more metastatic characteristics in NPC[37]. Angiogenesis is 
another important event for cancer development, and EBV also plays 
a role in regulating this process. LMP1 was reported to induce the 
expression of the principal pro-angiogenic factor vascular endothelial  
growth factor (VEGF) via the activation of JAK/STAT and MAPK/ERK 
signaling pathways[38]. In addition to LMP1, the EBV latent protein 
EBNA1 can increase the activity of the AP1 transcription factor and 

Table 4. Genetic risk for NPC: HLA and immune responses to Epstein-Barr virus (EBV)

Gene/function Study

Human leukocyte antigen (HLA) Linkage analysis studies in Hong Kong and Singapore show HLA association with NPC[18]

HLA-A2-B46 haplotype is associated with NPC in Taiwan[16]

RFLP study in Tunisia shows HLA-G (facilitates escape from cancer immunosurveillance); Ile 110 allele is
   less frequent among patients with lymph node involvement and more severe tumor stage, and deletion of
   C in codon 130 was associated with decreased NPC-free disease and survival[132]

T-cell receptor (TCR) and Toll-like
   receptor (TLR) in EBV infection
   and immune response

PCR-RFLP analysis of TCR gene in Singaporean study shows TCR polymorphism is associated with
   decreased NPC risk, particularly in patients with HLA B46[133]

PCR and direct sequencing of TLR polymorphism in Guangzhou study shows TLR3 polymorphism is related
   to NPC susceptibility but the effect is modest[134]

TLR4 SNP may modulate immune response to EBV and predispose to NPC[135]

Host cell immune response to EBV Microarray profiling of tumor and normal. EBV latent genes were confirmed to strongly associate with
   suppression of MHC class I HLA gene[4]

DC-SIGN promoter SNP analysis in a Cantonese population shows two SNPs on DC-SIGN promoter are
   associated with high risk for NPC[136]

CTLA-4 polymorphism analysis in a Hangzhou study shows that CTLA-4 SNP is highly associated with NPC
   susceptibility[137]

TNFα and HSP70-2 polymorphisms in a Tunisian study show the HSP70-2 genotype is associated with
   increased NPC risk[138]

PCR-RFLP analysis in a Taiwan study shows that p21WAF/CIP1 and TNFα polymorphisms have no
   association with NPC; comparison between smokers and non-smokers shows the association of
   environmental factor with the p21 in NPC[139]

TNFα polymorphism in Portuguese study shows NPC risk increased in undifferentiated NPC[140]

Miscellaneous Genotyping in a Guangzhou study shows an association of EBV-positive serology and genetic factors
   represented by tag SNPs in 35 genes in homologous recombination repair involved in DNA repair among
   healthy individuals[141]

PCR-RFLP, polymerase chain reaction-restriction fragment length polymorphism.
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induce AP1-mediated up-regulation of IL8, VEGF, and hypoxia-
inducible factor-1α to enhance angiogenesis in vitro [39].
      Although LMP2A plays a well-known, essential role in maintaining 
EBV latency in B cells, its role in epithelial cells is not well 
understood. Unlike LMP1, LMP2A is not normally regarded as a viral 
transforming gene and its expression is more consistently observed 
in NPC than LMP1. Indeed, the association of LMP2 with various 
oncogenic cell signaling pathways has been reported, suggesting 
that LMP2A may also participate in EBV-induced epithelial cell 
transformation[40]. For example, LMP2A can increase cell migration 
via the Akt signaling pathway by phosphorylating an inhibitory site 
on GSK3β, a Wnt signaling modulator downstream of Akt[41]. Indeed, 
LMP2A can activate the Akt signaling pathway in a PI3K-dependent 
manner and result in a PI3K-dependent nuclear translocation of 
β-catenin in the human foreskin keratinocytes[42]. 

EBV Impacts Stem Cell Signaling
Pathways
      Accumulating evidence indicates that understanding of cancer 
stem cell (CSC) behaviors holds great promise for the treatment of 
human cancers. However, CSC studies in NPC have been greatly 

hampered by the lack of suitable markers for investigation. Out of 
very few reports of the NPC CSC studies, the CD44+SOX2+ minor 
population was found to have stem-like properties in EBV-positive 
C666 NPC cells[43]. EBV seems to play an important role in regulating 
the stem-like characteristics, as the expression of the EBV latent 
proteins was associated with the activation of the Hedgehog (HH) 
signaling pathway and the expression of stemness-related markers 
and genes[44].
      One important hallmark for both cancer and stem cells is their 
self-renewal capability. As yet, it is not fully understood how cells 
regulate their own proliferation and differentiation into various tissues 
and cells. Many signaling pathways have been linked to stem cell 
behaviors or self-renewal abilities. Among them, Wnt, HH, and 
Notch are prominent signaling pathways reported over the past 
decade. Evidence gathered to date indicates these pathways may 
have regulatory impacts on stem cell growth and differentiation. We 
recently found that Wnt signaling regulates self-renewal networks, 
cyclin D1 expression, p53 pathway, generation of stem-like cells, and 
growth abilities of NPC cells[45]. Because EBV has been regarded as 
a major cause of NPC, it is reasonable to speculate that EBV may 
directly affect both p53 and Wnt signaling during the development of 
NPC[46,47]. 

Table 5. Genetic risk for NPC: carcinogen metabolism

Enzyme(s) Function Study Results

CYP2E1 Carcinogen metabolism

Carcinogen metabolism

50 NPC cases and 50 controls & 364 NPC cases
   and 320 controls in Taiwan were analyzed by 
   PCR-RFLP
2,499 subjects from 546 NPC families were
   genotyped
547 NPC cases and 755 controls in Guangzhou

Increased NPC risk for homozygous
   variant genotype[142,143]

Association of SNP and increased NPC
   risk for individuals <46 years and with
   smoking history[144]

CYP2A6 Carcinogen metabolism 74 NPC cases and 137 controls in Thailand were
   analyzed by PCR-RFLP

5-fold increase in NPC risk with mutant
   allele[145]

CYP2A13 Carcinogen metabolism The CYP2A13 gen from 45 NPC patients in Guangzhou
   were PCR-amplified and sequenced

Identified novel SNPs, but no correlation
   between SNPs and NPC risk[146]

CYPE2B6, CYPE2E1, 
   PRKDC, PCNA,
   CHEK2, NQ01 

DNA repair, nitrosamine
   metabolism

31 NPC cases and 10 controls in Taiwan compared
   in a microarray targeting biological pathways
   for carcinogen metabolism, DNA repair, and
   chromosomal regions of interest 

Differential expression in genes for
   DNA repair, nitrosamine metabolism,
   chromosomes 4p15-4q12 and 14q32[147]

CYP2E1, GSTP1,
   NQO1, MPO 

Carcinogen metabolism 358 NPC cases and 629 controls  in Guangzhou and
   Guangxi studied with Taqman genotyping and Tag
   SNPs

No significant difference between cases
   and controls[148] 

GSTM1
   (glutathione
   S-transferase M1)

Carcinogen metabolism 83 NPC cases and 114 controls in the US No association with NPC risk, but absence
   of GSTM1 is associated with moderately
   increased NPC risk[149]

GSTM1, GSTT1 
   (glutathione S-trans-
   ferase theta-1)

Carcinogen metabolism 350 NPC cases and 622 controls in Beijing studied
   with multiplex PCR

No significant association with NPC risk,
   but males with double null genotype had
   increased NPC risk[150]

GSTM1, GSTT1 Carcinogen metabolism Meta-analysis of 85 published papers and selected 8
   case-control studies of NPC

GSTM1 deletion is a risk factor for NPC;
  no association of GSTT1 with NPC risk[151]

Abbreviation as in Table 4.
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EBV Induces Epigenetic Changes
in NPC
      Epigenetic modifications, including histone modification and 
promoter hypermethylation, are critical for NPC tumor development. 
The LMP1 protein was reported to induce up-regulation of DNA 
methyltransferase (DNMT1 ) expression[48]. DNMT1  is mainly 
responsible for the maintenance of DNA methylation[49]. DNMT1 
expression was indeed induced by the LMP1 CTAR2 YYD domain 
via the JNK/AP1 signaling pathway. Thereafter, activated DNMT1 
expression resulted in promoter hypermethylation of the key epithelial 
marker E-cadherin[48]. On the other hand, EBV is also associated with 
histone modification in NPC. LMP1 expression positively correlated 
with the degree of phosphorylation of the serine 10 residue in histone 
H3 (p-H3Ser10). As a result, this histone modification is associated 
with increased cell proliferation, foci formation, and AP1 activation in 
NPC[50]. In contrast, knockdown of histone H3 or overexpression of a 
dominant-negative mutant (H3S10A) reversed the above-mentioned 
phenotypes. This suggests an important role of EBV in regulating 
epigenetic changes in cancer-related genes of the host cells in NPC 

and highlights important interactions of host and viral genes.

NGS Approaches to Elucidating the
Molecular Genetics of NPC
      GWAS studies using SNP arrays show the association of HLA 
subtypes with NPC susceptibility and identified several additional 
susceptibility loci[10,13-15]. However, these studies are often limited 
by the loci on the array, with most being noncoding or far away 
from genes. Hence, these loci are not immediately informative 
and are difficult to be studied experimentally. Moreover, GWAS 
studies often target common variants and miss the rare ones that 
might underlie cancer genetics[51]. Therefore, additional GWAS 
are needed to understand the genetic basis of NPC. Recent 
advances in NGS approaches have allowed NPC researchers to 
systematically sequence expressed genes (“transcriptome”), known 
exons (“exomes”), and complete genomes in NPC, as well as the 
EBV genome, to decipher the regulatory network between EBV and 
host[52]. Recently, Szeto et al .[53] used RNASeq to characterize the 
sequence variants and the mRNA-microRNA regulatory network 

Table 6. Genetic risk for NPC: DNA repair

Enzyme(s) Function Study Results

XRCC1 (X-ray repair complementing
   defective repair in Chinese hamster
   cells 1), hOGG1 (human 8-oxoG 
   DNA glycosylase) (CYP2E1)

DNA repair 334 NPC cases and 283 controls in Taiwan were
   studied with PCR-RFLP

Increased odds ratio (OR ) with multiple putative
   high-risk genotypes. Carriers with 1 putative
   high-risk genotype had OR=3; with 2, OR=4.3;
   and with 3, OR=25.[20]

XRCC1 XPD (xeroderma 
   pigmentosum group
   D or ERCC2)

DNA repair 462 NPC cases and 511 controls in Guangzhou
   were studied with PCR-RFLP

153 NPC cases and 168 controls in Sichuan
   were studied with PCR-RFLP

XRCC1 variant genotype  associated with
   decreased NPC risk, especially among males
   and smokers[152]

Increased NPC risk with XRCC1 and  borderline
   decrease in NPC risk with XPD; if both alleles
   are involved, then increase in NPC risk. No
   association with XRCC3[153]

ERCC1 (excision repair cross-
   complementing rodent repair 
   deficiency, complementation
   group overlapping antisense
   sequence)

DNA repair 267 NPC cases and 304 controls in Sichuan
   were studied with PCR-RFLP
ERCC1 genotyping in 42 patients with NPC
   in Hong Kong treated with gemcitabine and
   oxaliplatin

ERCC1 polymorphism associated with NPC
   risk[154]

No associations between survival or response
   rate and ERCC1 genotype[155]

RAD51L1 (RAD51 paralog B),
   BRCA2 (breast cancer 2, early
   onset), TP53BP1 (tumor protein
   p53-binding protein 1)

DNA repair Discovery stage: 755 NPC cases and 755
   controls in Guangzhou were studied by
   GoldenGate genotyping platform to investigate
   676 tagging SNPs for 88 DNA repair genes. 
Validation stage: 1,568 NPC cases and 1,297
   controls were analyzed by Sequenom DNA
   MassARRAY to validate 11 SNPs 

Individuals with inherited defects in DNA repair
   genes have increased NPC risk; RAD51L1 was
   the only gene validated[156]

N4BP2 (Nedd4-binding protein 2) DNA repair 531 NPC cases and 480 controls in Guangzhou
   studied with PCR sequencing 

Identified 3 novel SNPs associated with
   N4BP2 in NPC susceptibility 4p15 locus; two
   haplotypes were associated with NPC[157]

Abbreviation as in Table 4.
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in NPC cancer cell lines. Liu et al .[54] applied the NGS system to 
assemble the EBV genome using samples from patients with NPC in 
Guangdong province. An accumulation of such studies would help to 
elucidate NPC pathogenesis. 
      The tremendous data generated from NGS approaches provides 
a statistical and computational challenge. Although bioinformatics 
tools for computational analysis have developed rapidly[55-57], the 
choice of analysis is not straightforward and depends on the specific 
aims and study design. Thus, data analysis and interpretation remain 
the bottleneck of cancer genomic studies due to the complexities 
of NGS data and the cancer genome. Another challenge in NPC 
genomic study is significant heterogeneity and lymphocyte infiltration 
in the specimens, which might mask the true biological events in 
tumor cells[58]. To minimize false-negative errors, the International 
Cancer Genome Consortium (ICGC) guidelines suggest that the 
tumor cell content of a sample be at least 60%–80%. Meanwhile, 
increasing redundant coverage in sequencing can help compensate 
for low tumor purity[57]. It is also a great challenge for bioinformaticians 
to develop tools that allow sensitive detection of genomic changes 
in impure and heterogeneous cancer samples[59]. To minimize false-
positives, verification resequencing is necessary to estimate the 
technology-relevant errors, and it is important for studies to report a 
verification rate. As proposed by ICGC, at least 95% of the mutations 
identified in each sample should be real. 
      To make biological sense of the findings from NGS data will 
require computational, biological, and clinical analyses to link the 
biological pathways and the functional relevance of the molecular 
alterations to NPC, and to evaluate the associations of genomic 

changes with NPC diagnosis, prognosis, and treatment strategies. To 
tackle the fundamental basis for NPC, basic scientists in the area of 
bioinformatics, EBV, and NPC must collaborate with oncologists who 
can provide clinical information and translate our findings to the clinic. 
Furthermore, establishment of a NPC tissue bank is necessary to 
provide key resources for NGS projects. We have established a Hong 
Kong-wide Center for NPC Research (www.cnpcr.hku.hk) that aims 
to use genome-wide NGS approaches to elucidate the genetic basis 
for NPC susceptibility and to identify the genes and the biological 
pathways that underlie aggressive, recurrent NPC.

Conclusions
      Clarifying the roles of host and EBV genetics in NPC development 
is expected to enhance our understanding of NPC pathogenesis and 
to provide improved biomarkers for detection and novel targets for 
therapeutic intervention.  Targeted therapeutics will enhance survival 
of NPC patients with metastatic disease. Therefore, elucidating the 
interactions between EBV and host genes is expected to improved 
strategies for the clinical management of this deadly cancer.
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