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Abstract 
Type I insulin鄄  like growth factor receptor (IGF鄄  1R) has long been recognized for its role in tumorigenesis 

and growth, but only recently have the tools for targeting the IGF pathway become available. More than 
10 IGF/IGF鄄  1R inhibitors have entered clinical trials, and these belong to three main classes: (1) 
monoclonal antibodies against IGF鄄  1R, (2) monoclonal antibodies against IGF鄄  1R ligands (IGF鄄  1 and IGF鄄  
2), and (3) IGF鄄  1R tyrosine kinase inhibitors. These IGF鄄  1R-targeting agents share common effects on 
IGF鄄  1R signaling but differ in mechanisms of action, spectrum of target inhibition, and pharmacological 
features. Clinical activity of IGF鄄  1R inhibitors has been demonstrated with sustained responses in a small 
number of patients with select tumor types, such as Ewing sarcoma and thymoma. However, many large 
clinical trials involving patients with adult tumors, including non-small cell lung cancer, breast cancer, and 
pancreatic cancer, failed to show clinical benefit in the overall patient population. Possible reasons for 
failure include the complexity of the IGF鄄  1R/insulin receptor system and parallel growth and survival 
pathways, as well as a lack of patient selection markers. While IGF鄄  1R remains a valid target for selected 
tumor types, identification of predictive markers and rational combinations will be critical to success in 
future development. 
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Review 

Type I insulin­like growth factor receptor (IGF­1R) 
has been recognized for decades for its role in 
tumorigenesis and growth [1] . Not until recently had 
advances in medicinal chemistry and biotechnology 
provided the tools for targeting the insulin­like growth 
factor (IGF) pathway in patients. To date, more than 10 
IGF/IGF­1R inhibitors have entered clinical trials. Clinical 
validation of this target has been demonstrated in select 
tumor types. However, several large clinical trials failed 
to show clinical benefit in the overall patient population. 
In this review we focus on the two main classes of 
IGF­1R inhibitors in clinical development要monoclonal 
antibodies (mAbs) and small molecule tyrosine kinase 
inhibitors (TKIs)要and discuss the background, clinical 
experience, and lessons learned. 

IGF鄄  1R 
IGF­1R belongs to the insulin receptor (IR) family 

that includes the IR (a homodimer), IGF­1R (a 
homodimer), IGF­1R/IR (hybrid, heterodimeric 
receptors), and the mannose 6­phosphate receptor (also 
known as IGF­2R) [1]  (Figure 1). IGF­1R can be activated 
by the ligands insulin­like growth factor­1 (IGF­1) or 
insulin­like growth factor­2 (IGF­2). IGF­1R/IR hybrids 
preferentially signal with the IGF ligands. IR exists in 
two isoforms: IR­B, traditional insulin receptors, and 
IR­A, a fetal form that is re­expressed in selected tumors 
and preferentially binds IGF­2 [2] . IGF­2R is a non­ 
signaling receptor that acts as a 野sink冶 for IGF­2 [3] . 
These receptors may coexist in a given cell, with relative 
abundance and activation status varying by cell type, 
tissue type, and physiologic or pathologic conditions. 

The ligands of IGF­1R, IGF­1 and IGF­2 are 
abundant in the serum of adults [4]  and have complex 
interactions with IGF­1R/IR receptors. IGF­1 is secreted 
primarily by the liver upon stimulation by human growth 
hormone (HGH), whereas IGF­2 is non­HGH dependent 
and is expressed in a variety of tissues. There are at 
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Figure 1 

A, the 
insulin receptor family includes 
the insulin receptor (IR) in two 
isoforms (IR鄄  A and IR鄄  B), the 
type 1 insulin鄄  like growth factor 
receptor (IGF鄄  1R), and the 
mannose 6鄄  phosphate (M6P) 
receptor (IGF鄄  2R). IR and IGF鄄  
1R are expressed as preformed 
dimers, either homodimers or 
heterodimers. IGF鄄  2R is a non鄄  
signaling receptor that acts as a 
野sink冶 for IGF鄄  2. Insulin binds 
primarily to IR鄄  A or IR鄄  B, but 
also has weak affinity for IGF鄄  1R. 
IGF鄄  1 and IGF鄄  2 are ligands for 
the IGF鄄  1R and IGF鄄  1R/IR hybrid 
receptor along with IR鄄  A. 
Insulin鄄  like growth factor binding 
proteins (IGFBPs) bind to and 
prevent IGF鄄  1 and IGF鄄  2 from 
activating receptor signaling 
cascades. B, signaling of the 
IGF鄄  1R/IR system is mediated by 
the insulin receptor substrate 
(IRS) and Shc. PI3K鄄  AKT 
activation is the predominant 
downstream event of IGF鄄  1R/IR, 
but the MAPK pathway can also 
be activated. 
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least 6 well­characterized IGF­binding proteins  (IGFBP­1 
through ­6) that bind IGFs and prevent their action on 
the receptors. In serum, only  approximately 2% of IGF 
ligands exist in the unbound form. At the tissue level, 
bioavailability of IGF­1 and IGF­2 is modulated by IGFBP 
protease and the presence of the non­signaling, 
IGF­2­binding IGF­2R. Intracellular signaling of IGF­1R 
is mediated through IR substrates (IRS­1 through ­4) and 
Src­homology collagen protein (Shc) [5] , which in turn 
leads to activation of the mitogen­activated protein 
kinase (MAPK) pathway and the PI3K­AKT pathway 
(Figure 1B) [3] . PI3K­AKT is considered the predominant 
downstream signaling pathway for the IR family. 

IGF­1R is ubiquitously expressed in normal tissues 
and plays an important role in growth and various 
physiological functions, including those involving the 

cardiac and neurological systems, as well as glucose 
homeostasis. The impact on glucose probably occurs 
through feedback down­regulation of HGH by circulating 
IGF­1 and the local effect of IGF­1 on IGF­1R in the 
muscles or kidneys to promote glucose uptake [6,7] . 

Extensive  and  studies have implicated 
IGF­1R, IGF­1, and IGF­2 signaling in cancer 
development, maintenance, and progression. IGF­1R 
expression is critical for anchorage­independent growth, 
a well recognized property of malignant cells. IGF­1 and 
IGF­2 are strong mitogens in a wide variety of cancer 
cell lines, including prostate cancer [8] , breast cancer [9­12] , 
colon cancer [13,14] , and myeloma [15] . High circulating levels 
of IGF­1 have been associated with increased risk of 
breast, prostate, and colon cancers [1] . The IGF/IGF­1R 
pathway has also been shown to have extensive 
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Target Agent name 

Cixutumumab (IMC鄄  A12) [49,84] 

Figitumumab (CP鄄  751,871) [35,36,59] 

Dalotuzumab (MK鄄  0646; h7C10) [85,86] 

Ganitumab (AMG 479) [33] 

R1507 [41] 

SCH 717454 (19D12) [37] 

AVE1642 (EM164) [38] 

BIIB022 [87,88] 

MEDI鄄  573 [27,89] 

Sponsor 

ImClone 
Pfizer 
Pierre Fabre and Merck 
Amgen 
Roche 
Schering Plough 
ImmunoGen/Sanofi 
Biogen鄄  IDEC 
MedImmune 

Status 

Phase 2 
Discontinued after Phase 3 
Phase 3 
Phase 3 
Phase 2 
Discontinued after Phase 1 
Discontinued 
Discontinued after Phase 1 
Phase 1 

Class 

IgG1 
IgG2 
IgG1 
IgG1 
IgG1 
IgG1 
IgG1 
IgG4 
IgG2 

Phase 2 dose 

6 mg/kg qw, 10 mg/kg q2w 
20 mg/kg q3w 
10 mg/kg q2w 
18 mg/kg q3w 
9 mg/kg qw 
NA 
8 mg/kg q4w, 12 mg/kg q3w 
NA 
NA 

qw, every week; q2w, every 2 weeks; q3w, every 3 weeks; q4w, every 4 weeks; NA, not available. 

IGF鄄  1R 
IGF鄄  1R 
IGF鄄  1R 
IGF鄄  1R 
IGF鄄  1R 
IGF鄄  1R 
IGF鄄  1R 
IGF鄄  1R 
IGF鄄  1 and IGF鄄  2 

cross­talk with the estrogen receptor (ER), epidermal 
growth factor receptor (EGFR), and human epidermal 
growth factor receptor 2 (HER­2) signaling pathways and 
to play an important role in the resistance mechanisms 
of cytotoxic drugs and EGFR/HER­2­targeted agents [16] . 
More recent work also suggests a potential role for 
IGF­1R in the resistance to mTOR inhibitors [17]  and 
RAF­MEK inhibitors [18] . 

IGF­1R can be detected in most solid tumors and 
hematological malignancies examined to date, and IGF­2 
overexpression, IGFBP modulations, and IGF­2R down­ 
regulation have also been seen in cancer cells  [5,19,20] . 
However, unlike other growth factor receptors such as 
EGFR and HER­2, activating mutations of the 
gene have not been reported, and gene amplification is 
extremely rare in the tumors that have been tested [21] . 
On the other hand,  several genetic abnormalities can 
lead indirectly to IGF/IGF­1R overexpression and 
signaling. For example, in Ewing sarcoma (EWS), the 
EWS/friend leukemia integration­1 (FLI­1) translocation 
product can interact with the  promoter and 
repress its expression, and IGF­1R is required for 
transformation by the fusion protein. Some tumor types, 
including hepatocellular carcinoma and breast cancer, 
have been associated with loss of heterozygosity of the 

gene [22] . Loss of imprinting of IGF­2 (loss of 
methylation resulting in biallelic expression), first 
described in Wilms tumor, has since been identified in 
adult tumors and is associated with an increased risk of 
colon cancer [23,24] . These genetic changes may increase 
IGF­2 production or its bioavailability for IGF­1R 
signaling. 

IGF鄄  1R Inhibitors in Clinical 
Development 

Several approaches to inhibit IGF­1R signaling have 
been investigated. Agents in current clinical develop鄄  

ment belong to three main classes (Tables 1 and 2): 
monoclonal antibodies (mAbs) against IGF­1R, mAbs 
against IGF­1R ligand (IGF­1 and IGF­2), and IGF­1R 
tyrosine kinase inhibitors (TKIs). At least eight human or 
humanized anti­IGF­1R mAbs entered clinical trials 
(Table 1), though several clinical development programs 
have since been discontinued. These antibodies are 
highly specific to IGF­1R and do not bind IR. Common 
mechanisms of action include blockade of the receptor 
from ligand binding and internalization/degradation of 
IGF­1R [25] . In addition, anti­IGF­1R mAbs also down­ 
regulate the IGF­1R/IR hybrid receptor [26] . 

Currently, MEDI­573 is the only monoclonal antibody 
in clinical development that targets the ligands IGF­1 and 
IGF­2 [27] . MEDI­573 inhibits IGF­induced IGF­1R and 
IR­A activation, but does not affect insulin signaling. 
Several small molecule TKIs against IGF­1R are under 
clinical investigation. Among them, OSI­906 and BMS­ 
754807 are the most specific, whereas others also inhibit 
receptor tyrosine kinases beyond the IGF­1R and IR 
family (Table 2). Because of the high degree of 
homology between IGF­1R and IR, even the most 
specific IGF­1R TKIs have some degree of inhibitory 
effect on the IR. For example, OSI­906 has a half 
maximal inhibitory concentration (IC50) of 0.018 滋  mol/L 
against IGF­1R and 0.054 滋  mol/L against IR [28,29] . At 
clinically relevant doses, this agent is expected to inhibit 
IGF­1R and IR simultaneously. Co­inhibition of IR and 
IGF­1R may confer a better anti­tumor effect because IR 
signaling induced by insulin or IGF­2 has been 
implicated in a number of preclinical tumor models [30] , 
including breast cancer [31] . Furthermore, when IGF­1R 
signaling is disrupted, cells may respond with an 
increase in IR activity [32] . However, IR inhibition is 
expected to impact insulin signaling and may increase 
the risk of toxicities, particularly hyperglycemia. 

In summary, the three classes of IGF­1R­targeting 
agents share common effects on IGF­1R signaling, but 
differ in mechanisms of action, spectrum of target 
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inhibition, and pharmacological features (Table 3). For 
example, anti­IGF­1R mAbs only block signaling through 
IGF­1R and IGF­1R/IR hybrids, whereas IGF­1/2­ 
neutralizing mAb prevents IGF signaling through both 
homodimers and heterodimers of IGF­1R and IR­A, but 
spares insulin signaling. IGF­1R TKIs can potentially 
block all receptors responsible for IGF/insulin signaling. 
The differing spectrum of target blockade may potentially 
translate into different toxicity and/or activity profiles. 

Clinical Experience with IGF鄄  1R 
Inhibitors 

IGF鄄  1R-targeting mAbs 

The maximum tolerated dose for monotherapy was 
not reached at the conclusion of the phase 1 trials for 
any of the anti­IGF­1R mAbs. Selection of the phase 2 
doses was largely based on feasibility and the target 
steady­state drug levels extrapolated from preclinical 

tumor models. Table 1 lists the recommended 
phase 2 doses for monotherapy with different IGF­1R 
mAbs. Anti­IGF­1R mAbs are generally well tolerated 
as monotherapy. Common treatment­emergent adverse 
events include hyperglycemia, the classic side effect of 
all anti­IGF­1R mAbs. Hyperglycemia, which occurs in 
about 20% patients, is mostly grades 1­2 and can be 
controlled with oral diabetic medications with continued 
mAb treatment. 

Pharmacodynamic changes tested in early clinical 
trials with anti­IGF­1R mAbs have shown evidence of 
target modulation, including down­regulation of IGF­1R in 
granulocytes and circulating tumor cells [33,34] , a significant 

incre ase in HGH and IGF­1, and a variable increase in 
the insulin level [33,35­38] . Decrease in the  standardized 
uptake values of (18)F­fluoro­2­deoxy­D­glucose­positron 
emission tomography (FDG­PET) has also been observed 
in anecdotal cases [33] . 

The most notable activity of anti­IGF­1R mAbs was 
demonstrated in EWS, with reports of complete 
responses (CRs) or partial responses (PRs) and 
prolonged stable disease (SD) in phase 1 trials [33,39­41] . 
These promising results led to a series of phase 2 
evaluations in the indication (Table 4). The largest 
EWS­specific phase 2 trial used R1507 [42] . In this trial, 
115 patients with recurrent or refractory EWS older than 
2 years of age were treated at either 9 mg/kg once a 
week (  = 109) or 27 mg/kg every 3 weeks (  = 6). The 
overall CR/PR rate was 10% (1 CR, 10 PRs), with a 
median response duration of 29 weeks (range, 12 to 94 
weeks) and a median overall survival of 7.6 months 
(95% confidence interval, 6 to 9.7 months). Ganitumab 
(AMG 479) was also tested in patients with refractory 
EWS (  = 19) or desmoplastic round cell tumors (  = 
16) [43] , and the results were reported together. PR was 
noted in one patient with EWS (censored at 47 weeks) 
and one patient with desmoplastic round cell tumor. 
Overall, five additional patients had SD for more than 24 
weeks. Recently, Malempati  . [44]  reported the results 
of a Children s Oncology Group (COG) trial involving 47 
pediatric patients treated with cixutumumab (IMC­A12) at 
6 mg/kg or 9 mg/kg weekly on 28 day cycles. Of the 35 
patients in the EWS expansion cohorts with heavily 
pretreated disease, 3 patients had confirmed PRs. As 
with other mAbs, the median progression­free survival 
(PFS) in the overall patient population was short (44 
days in 9 mg/kg dose cohort ) [44] . The overall experience 

Agent 

Linsitinib (OSI鄄  906) [28,29] 

BMS鄄  754807 [90] 

BVP 51004 [91] 

XL228 [92] 

INSM鄄  18 (NDGA) [93,94] 

Sponsor 

OSI 
BMS 
Biovitrum 

Exelixis 

Insmed 

Class (route) 

TKI (oral) ATP鄄  competitive 
TKI (oral) ATP鄄  competitive 
Small molecule (oral) 
Not ATP鄄  competitive 
TKI (IV) 
ATP鄄  competitive 

Phenolic compound isolated from 
creosote bush Larrea divaricata 

IC50 (滋  mol/L) against 

Phase 3 
Phase 2 
Phase 1 

Phase 1 

Phase 1 

a Targets for which IC50 is <50 fold of the IC50 for IGF鄄  1R. IGF鄄  1R, type I insulin鄄  like growth factor receptor; IR, insulin receptor; TKI, tyrosine 
kinase inhibitor; IC50, half maximal inhibitory concentration; IV, intravenous; NDGA, nordihydroguaiaretic acid; OSI, OSI Pharmaceutical; BMS, 
Brystol鄄  Meyers Scribb; HER鄄  2, human epidermal growth factor receptor 2. 

IGF鄄  1R IR Others a 

0.018 
<2 nmol/L 
0.038 滋  mol/L 

1.6 nmol/L 
(cellular) 

31 滋  mol/L 
(cellular) 

0.054 
<2 nmol/L 
No effect 

NA 

NA 

None 
11 other kinases <100 nmol/L 
None 
誗Bcr鄄  Abl: 5 nmol/L 
誗Bcr鄄  Abl T315I: 1.4 nmol/L 
誗Src: 6.1 nmol/L 
誗Aurora A: 3.1 nmol/L 
誗LYN: 2 nmol/L (all cellular) 
HER鄄  2: 15 滋  mol/L (cellular) 

Sponsor 
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Features of interest 

Mechanism of action 

Signaling affected 

Pharmacokinetics 

mAb against IGF鄄  1R 
誗Block IGF鄄  1R from ligand binding 
誗Receptor degradation of IGF鄄  1R 

homodimer and IGF鄄  1R/IR hybrids 
誗Possible ADCC (if IgG1) 
誗Specific 
誗Inhibit signaling of: 

银IGF鄄  1R 
银IGF鄄  1R/IR鄄  A hybrid 

誗No effect on IR鄄  A or IR鄄  B 

誗Long t1/2 (days to weeks) 
誗PK interaction less likely in combination 

regimens 
誗Poor CNS uptake 

mAb against IGF鄄  1 and 鄄  2 
誗Neutralizing ligand from binding 

to IGF鄄  1R and IR鄄  A 

誗Specific 
誗Inhibit IGF鄄  1 or IGF鄄  2 signaling 

through: 
银IGF鄄  1R 
银IGF鄄  1R/IR鄄  A 
银IR鄄  A 

誗No effect on insulin signaling 
誗Long t1/2 (days to weeks) 
誗PK interaction less likely in 

combination regimens 
誗Poor CNS uptake 

Small molecule TKI 
誗Kinase inhibition intracellular 

银(also inhibit ligand鄄  independent 
activation, if relevant) 

誗Less specific 
誗Inhibit signaling of RTKs (by any ligand): 

银IGF鄄  1R 
银IGF鄄  1R/IR 
银IR (to a lesser degree than for IGF鄄  1R) 

誗May inhibit targets beyond IGF鄄  1R and 
IR (XL228; INSM鄄  18) 

誗Short t1/2 (hours) 

IGF鄄  1R, type I insulin鄄  like growth factor receptor; IR, insulin receptor; mAbs, monoclonal antibodies; TKIs, tyrosine kinase inhibitors; ADCC, 
antibody鄄  dependent cell鄄  mediated cytotoxicity; RTKs, receptor tyrosine kinases; PK, pharmacokinetics; t1/2, half life; CNS, central nervous 
system. 

in EWS suggests that IGF­1R inhibition with  mAb has 
major activity in this indication, but the benefit was 
restricted to a small subset of patients. Further studies 
are warranted to explore markers predictive of response, 
mechanisms of resistance, and combination strategies. 

Phase 1 trials of IGF­1R­targeting mAbs have also 
shown objective responses in patients with neuro鄄  
endocrine tumors [45]  and prolonged SD in patients with 
hepatocellular carcinoma, thymoma, and prostate 
cancer. A phase 2 trial of cixutumumab was initiated in 
patients with thymoma and thymic carcinoma [46] . For the 
30 evaluable patients with thymoma, 4 patients had PRs, 
23 had SDs, and only 3 had progressive disease. No 
response was observed in the thymic carcinoma cohort. 
Of note, 8 of 33 patients with thymoma developed 
autoimmune symptoms, 4 of which were new onset, 
while on study, including immune thrombocytopenic 
purpura, myositis, myocarditis, colitis, pure red cell 
aplasia, and a food allergy. The underlying mechanism 
of the autoimmune phenomena is unclear. 

IGF­1R­targeting mAbs have shown less single 
agent activity in other tumors. Abou­Alfa  .  [47] 
reported the results of a phase 2 trial of cixutumumab in 
hepatocellular carcinoma. In that trial with 22 evaluable 
patients, no objective responses were observed; 7 (29%) 
had SD for at least four months. The median overall 
survival (OS) was 8 months. Similarly, 14 patients with 
adrenal cortical cancer were treated with figitumumab in 

a phase 2 trial, in which eight patients had stable 
disease, but none had objective responses [48] . A phase 2 
trial of cixutumumab in 31 patients with  metastatic 
castration­resistant prostate cancer showed no objective 
responses, although the result was considered promising 
as some patients achieved stabilization of their 
initially progressing tumors  [49,50] .  The median time to 
progression was 3.8 months, with 9 patients showing SD 
for more than 6 months.  Combination regimens in 
castration­sensitive prostate cancer are currently being 
explored. 

IGF鄄  1R TKIs 

Phase 1 trials of the IGF­1R TKI OSI­906 explored 
two main schedules: continuous oral dosing (once or 
twice daily without interruption) and intermittent oral 
dosing (days 1­3 every 14 days) [51­53] . DLTs included: 
grade 3 hyperglycemia, grade 3 QT prolongation, and 
grade 4 ALT/AST elevation. Daily dosing up to 300 mg 
indicated a linear PK, with median terminal  1/2  of 2­4 h. 
The recommended phase 2 doses were determined to 
be 150 mg, twice per day, 500 mg daily, or 600 mg daily 
on Day 1 to Day 3 in 14­day cycles. The plasma 
concentrations in the phase 1 trials exceeded the 
野efficacious冶 concentration (IC50) in the  models 
(1 滋  mol/L). 

Helen X. Chen et al. Inhibitors of IGF鄄  1R in cancer 

246



Chinese Journal of Cancer Chin J Cancer; 2013; Vol. 32 Issue 5 

EWS 
EWS 

EWS 
EWS and DRCT 

HCC 
ACC 
Metastatic castration鄄  
resistant prostate 
cancer 
Thymoma 
NSCLC 
(squamous cell) 
NSCLC 

Pancreatic cancer 

Colorectal cancer 

Breast cancer 

Figitumumab 
Cixutumumab 
(IMC鄄  A12) 
R1507 
Ganitumab 
(AMG 479) 
Cixutumumab 
Figitumumab 
Citxutumumab 

Citxutumumab 
Figitumumab 

Ganitumab 
Cixutumumab 

Dalotuzumab 

Ganitumab 

OSI­906爷s target effect was reflected by a dose­ 
dependent increase in the insulin levels. SD more than 
12 weeks in duration was seen in patients with thymic, 
adrenocortical, and colorectal cancer. Interestingly, in 
the phase 1 trial for the intermittent schedule [51] , 1 of 
the 3 patients with adrenocortical carcinoma had a 
confirmed PR in the primary tumor and multiple lung 
metastases, whereas another patient had prolonged SD 
of 32 weeks. 

Currently, OSI­906 is being tested in combination 
with erlotinib in patients with NSCLC with EGFR 
activating mutation, in pancreatic cancer for combination 
with standard of care, and in head and neck cancer for 
combination with cetuximab. A phase 3 study comparing 
OSI­906 versus placebo in patients with advanced 
adrenocortical cancer is ongoing. 

IGF鄄  Neutralizing mAb 

The only IGF­1­neutralizing mAb in clinical trials, 
MEDI­573, is still in the early stage of development. In a 
phase 1 trial of MEDI­573, the drug was well tolerated in 

the 25 patients treated, and the maximum tolerated dose 
was not reached. Hyperglycemia occurred in 2 patients [54] . 
No objective responses were seen in the phase 1 trial. 
Phase 2 trials are ongoing in breast cancer for 
combination with endocrine therapy. 

Combination of IGF鄄  1R Inhibitors and 
Chemotherapy or Targeted Agents 

Combination with chemotherapy 

A number of clinical trials have been initiated 
involving the combination of anti­IGF­1R mAbs and 
standard chemotherapies in multiple tumor types. In 
pancreatic cancer, the randomized phase 2 trial for 
gemcitabine with or without ganitumab revealed a 
statistically significant improvement in the combination 
arm in PFS [median of 5.1 months vs. 2.1 months, 
hazard ratio (HR) = 0.6,  = 0.07] and OS (median of 
8.7 vs. 5.9 months, HR = 0.67 ,  = 0.12) [55] . On the 
other hand, no difference in PFS was observed when 

Tumor type Agent Trial and regimen Reference 

IGF鄄  1R, type I insulin鄄  like growth factor receptor; EWS, Ewing sarcoma; DRCT, desmoplastic round cell tumor; HCC, hepatocellular 
carcinoma; ACC, adrenocortical carcinoma; NSCLC, non-small cell lung cancer; CR, complete response; PR, partial response; SD, stable 
disease; PFS, progression鄄  free surivial; OS, overall surivial ORR, overall response rate. 

Phase of trial Activity 

Monotherapy 
Monotherapy 

Monotherapy 
Monotherapy 

Monotherapy 
Monotherapy 
Monotherapy 

Monotherapy 
Chemotherapy 依 
figitumumab 
Erlotinib 依 figitumumab 
Erlotinib 依 R1507 
Gemcitabine 依 ganitumab 
Gemcitabine + erlotinib 依 
cixutumumab 
Irinotecan鄄  cetuximab 依 
dalotuzumab 
Exemustane or 
fulvestrant 依 ganitumab 

Phase 1 (n=14) 
Phase 1/2 
(n=35 on EWS expansion) 
Phase 2 (n=115) 
Phase 2 (n=16) 

Phase 2 (n=24) 
Phase 2 (n=14) 
Phase 2 (n=31 in q2w 
dose cohort and n=10 in 
q3w dose cohort) 
Phase 2 (n=30) 
Phase 3 

Phase 3 
Phase 2 
Phase 2 
Phase 2 

Phase 2/3 

Phase 2 

1 CR, 1 PR, 8 SD 
3 PRs 

1 CR, 10 PR 
1 PR in EWS, 1 PR in DRCT, 
5 SD 
No PR/CR, 7 SD for > 4 months 
No PR, 8 SD 
9 patients had SD > 6 months in 
q2w cohort; 
3 patients had SD 
4 patients had PRs, 23 had SD 
Experimental vs. control; 
OS: 8.5 vs. 10.3 months 
Early termination for futility 
No difference in 12鄄  week PFS 
Increase in PFS and OS 
No difference in PFS and OS 

No difference in PFS 

No difference in ORR or PFS 

[95] 
[44] 

[42] 
[43] 

[47] 
[48] 
[50] 

[46] 
[60] 

[71] 
[70] 
[55] 
[56] 

[72] 

[65] 
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cixutumumab was added to gemcitabine and erlotinib as 
the backbone regimen in pancreatic cancer [56] . The reason 
for the differing outcomes of the two trials is unclear. 
Interestingly, a population pharmacokinetics (PK) 
analysis in the ganitumab trial in pancreatic cancer 
showed a positive association between OS and PFS with 
higher exposure of ganitumab [57] . Unfortunately, a definitive 
phase 3 trial in advanced pancreatic cancer for 
gemcitabine with or without ganitumab was recently 
halted because the independent data monitoring 
committee concluded that the addition of ganitumab is 
unlikely to result in a statistically significant improvement 
in the primary endpoint of OS. More data from that trial 
will be forthcoming in the final analysis [58] . 

Data from a randomized phase 2 trial for 
figitumumab in combination with carboplatin and 
paclitaxel in advanced, treatment­na觙  ve non­small cell 
lung cancer (NSCLC) showed promising results with 
higher overall response rates and PFS, particularly in 
patients with squamous cell carcinoma [59] , but this result 
was not confirmed in a  large, international phase 3 trial. 
The trial was terminated early after interim analysis 
indicated an increase in early deaths as well as futility of 
the experimental arm [60] . Biomarker exploration indicated 
an association between IGF­1 with toxicity and efficacy. 
Patients with low baseline free IGF­1 had worse survival 
with the addition of figitumubmab (HR = 1.6,  = 0.006), 
whereas patients with high free IGF­1 had better 
outcomes with figitumumab and chemotherapy compared 
to chemotherapy alone (HR = 0.62,  = 0.13). Confirmation 
for this marker is limited at this time. 

Combination with anti鄄  estrogen therapy 

A key growth and survival mechanism of estrogen­ 
dependent tumors is the functional cross­talk  and co­ 
dependence between IGF/IGF­1R and ER [16,61,62] . Anti­ 
IGF­1R agents are highly active in estrogen­dependent, 
tamoxifen­responsive cell lines but generally ineffective 
in tamoxifen­resistant cells [63] . Furthermore, addition of 
anti­IGF­1R antibodies to tamoxifen enhanced the 
anti­tumor activity in T61 and MCF­7 tamoxifen­sensitive 
breast cancer models [26,63,64] . 

These results support the clinical evaluation of 
addition  of IGF­1R inhibitors to anti­estrogen therapies. 
However, results from clinical trials combining IGF­1R 
mAbs and antiestrogen agents have been disappointing. 
The combination of ganitumab and fulvestrant or 
exemestane did not delay or reverse resistance to 
hormonal therapy [65] . Reasons for the failure of this trial 
are unclear but could be related to intrinsic or induced 
activation of IR and/or lack of patient selection. Given 
the important role of IR in breast cancer, evaluation of 
receptor­targeting antibodies with IGF­1R TKIs or IGF­1­ 
and IGF­2­neutralizing mAbs would be interesting. 

Combination with EGFR or HER鄄  2 inhibitors 

IGF­1R signaling has been causally linked to 
or acquired resistance to trastuzumab (Herceptin誖  ) and 
EGFR­targeting agents in numerous models [16] . 
and  tumor models have also demonstrated direct 
interactions between IGF­1R, EGFR/HER­2 [16,62,66­68] , and, 
in some studies, co­localization of IGF­1R and HER­2 [68,69] . 
Treatment of resistant cells with IGF­1R inhibitors was 
shown to inhibit transactivation of HER­2 and restore 
sensitivity to trastuzumab [16,68,69] . Similarly, addition of anti­ 
IGF­1R agents to EGFR TKIs or anti­EGFR mAbs has 
been shown to prevent, delay, or reverse resistance to 
EGFR inhibitors [66,67] . The preclinical rationale supported 
clinical evaluations for the combination of IGF­1R and 
EGFR inhibitors in NSCLC, colorectal cancer, and head 
and neck cancers, as well as the combination of anti­ 
IGF­1R mAb with lapatinib in HER2­positive breast 
cancer. 

Clinical results from the combination of IGF­1R and 
EGFR inhibitors have been disappointing. A randomized 
phase 2 trial of erlotinib with or without the anti­IGF­1R 
mAb R1507 failed to show difference in the primary 
endpoint of 12­week PFS. Intriguingly, in 36 patients 
with  mutation (27% of the patients who were 
evaluable for mutation status), the 12­week PFS 
appeared better in the R1507 group as compared with 
the erlotinib­alone arm (36% vs. 0%), although this result 
was based on retrospective analysis on a fraction of the 
patients [70] . A phase 3 trial of figitumumab and erlotinib 
versus erlotinib alone in unselected NSCLC, not 
including adenocarcinoma patients, was closed early 
after an interim analysis suggesting futility and toxicity 
concerns [71] . 

A randomized phase 2 trial in colorectal cancer with 
dalotuzumab (MK­0646) in combination with cetuximab 
and irinotecan also had a negative outcome [72] . A 
subsequent analysis of biomarkers suggested that 
patients with high tumor expression of IGF­1R may 
derive benefit from the addition of dalotuzumab, whereas 
those with IGF­2R overexpression were likely to be 
resistant to anti­IGF­1R mAb [73] . These intriguing results 
remain to be confirmed and warrant further studies. 

Combination with mTOR inhibitors 

Recent studies in preclinical models and tumor 
biopsies  from patients demonstrate that treatment with 
mTOR inhibitors leads to up­regulation of AKT 
phosphorylation [74,75] . They further suggest that the 
IGF/IGF­1R pathway mediated feedback activation of 
AKT and that combining rapamycin and IGF­1R 
inhibitors enhanced antitumor effects [74,75] . The most 
significant synergism was observed in pediatric tumor 
models such  as those for EWS and osteosarcoma, 

Helen X. Chen et al. Inhibitors of IGF鄄  1R in cancer 

248



Chinese Journal of Cancer Chin J Cancer; 2013; Vol. 32 Issue 5 

where the combination of an anti­IGF­1R mAb and 
rapamycin led to complete tumor regression, whereas 
single agents only induced modest growth delay [76] . 

This combination strategy has been pursued with 
several IGF­1R antibody agents [77­81] and TKIs [82] . A phase 
1 trial with cixutumumab and temsirolimus (CCI­779, 
Torisel誖  ) has shown that the combination is feasible at 
the full doses of both agents [80] . Mucositis was the most 
common toxicity. In a preliminary study of efficacy in the 
expansion for 20 patients with heavily pretreated EWS, 
35% patients achieved either CR/PR or SD for five 
months. Interestingly, 1 patient who had  progressed on 
a previous anti­IGF­1R mAb achieved a CR that lasted 
for more than 20 months [77] . In another phase 1 trial for 
the same strategy, with ganitumab and everolimus, CR 
was observed in 2 patients with  refractory NSCLC [78] . 
Efficacy data were also promising for patients with 
ER­positive breast cancer in a phase 1 trial for 
dalotuzumab and ridaforolimus, warranting further 
studies for the combination in the indication [79] . A phase 
2 evaluation of the combination is ongoing in pediatric 
malignancies, neuroendocrine tumors, and breast 
cancer. 

Combination with MEK inhibitor 

Preclinical work suggested activation of IGF­1R as a 
potential mechanism of escape from treatment with 
MAPK inhibitors [18] . Also, MEK and IGF­1R inhibitors had 
additive effects in preclinical models with  or 
mutations [18] . Ahmed  . [83]  recently reported the first 
clinical experience with combined IGF­1R and MEK 
inhibition in a National Cancer Institute (NCI)­sponsored 
trial of cixutumumab and selumetinib (AZD6244). Dose­ 
limiting toxicities included visual changes, requiring dose 
reduction of selumetinib to 50  mg twice daily in 
combination with full dose cixutumumab (20 mg/kg every 
3 weeks) at maximum tolerated dose. Pharmacodynamic 
endpoints and preliminary efficacy evaluations are 
ongoing in the expansion cohort. 

Considerations in Predictive Markers 
and Resistance Mechanisms 

Experience with IGF­1R inhibitors indicates that the 
pathway is a valid target in human cancers, but the 
clinical benefit seems to be restricted to a small subset 
of patients. Identifying patient selection markers is a 
critical step for success in IGF­1R inhibitor development. 
Several factors may also confer  or acquired 
resistance, including absence or biological irrelevance of 
the intended target, IGF­1R ; escape mechanisms within 
or outside the IGF­1R/IR system; or constitutively 
activate downstream effector molecules. 

At the current time, no predictive markers for IGF­1R 
inhibitors are available. In view of the complexity of the 
IGF­1R and IR family, as well as their extensive 
interaction with several other signal transduction 
pathways, it may be difficult to identify a uniform set of 
predictive markers for all tumor types and molecular 
contexts, and for all classes of IGF/IGF­1R  inhibitors. 
Ongoing studies focus on the following areas: 
誗Genomic alterations within the IGF­1R axis in tumors; 
誗Genetic alterations outside the IGF­1R axis that may 
affect the IGF­1R signaling (e.g., chromosomal 
translocations resulting in transcriptional modulations 
of ligands or receptors); 

誗Absolute and relative levels as well as phosphorylation 
status of IGF­1R and IR; conformations of the 
receptors (homodimers or heterodimers) 

誗 Bioavailability of ligands (including IGF­1, IGF­2, 
IGFBP3, and decoy receptor IGF­2R); 

誗Activating mutations of downstream molecules such as 
,  ,  , and  ; 

誗 Markers related to parallel pathways such as EGFR 
and vascular endothelial growth factor (VEGF); and 

誗Markers related to epithelial­mesenchymal transition. 

Preliminary data based on a limited number of 
patients suggested a few markers要free IGF­1 in the 
circulation and tumor expression of IGF­1, IGF­1R, and 
IR要warrant research and confirmation in prospective 
randomized trials is required. Additional studies on 
tumor biology and the molecular consequences of 
IGF­1R blockade are needed to provide guidance for 
patient selection and combination strategies. 

Summary 
The three classes of IGF/IGF­1R inhibitors要anti­ 

IGF­1R mAbs, IGF­1­ and IGF­2­neutralizing mAbs, and 
IGF­1R TKIs要have distinct mechanisms of actions and 
potentially different resistance/escape mechanisms. 
Given the complexity of the IGF­1R/IR family and the 
dynamic predominance of specific receptors and ligands 
in individual tumors, each class of anti­IGF/IGF­1R 
agents may have unique advantages in selected tumor 
settings and different toxicity profiles. 

Currently available clinical data with anti­IGF­1R 
mAbs and TKIs have demonstrated that these targeting 
approaches are feasible and can induce strong 
anti­tumor activities in several tumor types, including rare 
tumors refractory to standard therapies. However, the 
efficacy is likely to be limited to a small patient subset. 

A variety of mechanisms may confer intrinsic or 
acquired  resistance, highlighting the need for rational 
combination strategies. Preliminary data support further 
studies for  the combination of IGF­1R­specific inhibitors 
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with  insulin/IR­targeting agents, mTOR inhibitors, and 
MEK inhibitors. Critical tasks for future research include 
deeper and broader understanding of the biology of 
IGF­1R, exploration of predictive markers, and most 
importantly, integration of biomarker studies in all clinical 

investigations of these agents and combination 
regimens. 
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