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Single-cell transcriptomics and epigenomics point to
CD58-CD2 interaction in controlling primary melanoma
growth and immunity

Immunotherapy is currently one of the most promis-
ing treatment options for malignant melanoma [1]. To
uncover new immunological targets for future treatment
approaches, single-cell transcriptomic and epigenomic
analyses were performed on human primary melanoma
(MM) and melanocytic nevus (Nev) samples (Figure 1A).
The detailed methods of this study are described in the
Supplementary Material.
MM and Nev biopsies (Supplementary Figure S1;

Supplementary Table S1) were analyzed by single-cell
RNA sequencing (scRNA-seq) and single-cell Assay for
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Transposase-Accessible Chromatin sequencing (scATAC-
seq) (Supplementary Figure S2; Supplementary Tables S2
and S3). Using Uniform Manifold Approximation and
Projection (UMAP), 28 distinct cellular clusters were iden-
tified and annotated based on scRNA-seq data from a
previous report and manual curation (Figure 1B; Supple-
mentary Figure S3A) [2]. Examples of gene expression
patterns for individual cell types are provided in Supple-
mentary Table S4. Lesional T lymphocytes were quantified
using scRNA-seq data and anti-CD3 immunofluorescence
staining, which revealed three distinct immune states: hot
(>25 % T cells), intermediate (>6-25 % T cells), and cold
(0-6 % T cells) (Supplementary Table S5).
Based on a previous study examining melanoma cell

differentiation statuses, the melanoma cell cluster was
divided into 8 distinct subclusters (Supplementary Figure
S3B, C) [3]. Unsupervised clustering further refined these
findings, predicting 11 cellular subclusters of melanoma
cells (Figure 1C, Supplementary Table S6) [3].
To investigate the molecular mechanisms underlying

melanoma cell dedifferentiation, RNA velocity and latent
time (LT) analyses were performed (Supplementary Mate-
rial andMethods). These analyses measure developmental
processes based on the gene expression patterns of spliced
and unspliced genes [4], with LT more directly reflecting
transcriptional dynamics. As shown in Figure 1C, RNA
velocity arrows indicate a trajectory from the melanoma
subcluster of undifferentiated, neural crest (nc)-like
cells on the left toward the more differentiated Mel_trans-
melan_c7 andMel_trans-melan_c8 subclusters at the right
edge. LT analysis (Figure 1C) and the latent time heatmap
(Figure 1D) revealed an opposing trajectory toward a
more dedifferentiated state, exemplified by the Mel_trans
subcluster. Here, melanoma cell dedifferentiation was
linked to gene sets enriched in antigen presentation and
the induction of T cell receptor signaling (Figure 1D). This
aligns with the known association between high immune
cell infiltrates and dedifferentiated tumors. Notably,
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F IGURE 1 Single-cell RNA and single-cell ATAC sequencing of primary melanoma and melanocytic nevus samples. Ten primary
melanoma samples (MM) and three benign melanocytic nevus (Nev) samples were analyzed by 10x Genomics single-cell RNA sequencing
(scRNA-seq) technology. Five MM samples and one Nev sample were analyzed by single-cell ATAC (scATAC) sequencing. (A) Overview of

(Continues)
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F IGURE 1 (Continued)
study design. (B) Analysis of scRNA-seq data from melanoma and nevus samples using the CellRanger software (10x Genomics), the R
package Seurat (https://satijalab.org/seurat/) and principal component analysis (PCA). Specific cell type populations were identified by
computing cell-type-specific positive markers using the FindAllMarkers function. Visualization was performed by Uniform Manifold
Approximation and Projection (UMAP) of the integrated dataset, colored by cell type. (C) Zoom-in of the UMAP of the melanoma cell cluster
from scRNA-seq data shown in (B). Gene expression data were analyzed by RNA velocity and latent time (LT) [4] analysis to show
developmental trajectories of the melanoma cells. RNA velocity arrows point towards the right edge of the cluster, towards differentiated cells,
and LT points in the opposite direction, towards de-differentiated cells, due to different mathematical approaches. (D) Heatmap of the
dynamics of gene expression patterns during LT development of melanoma cells. LT profiles of 50 consecutive genes (top to bottom) reveal
the shift of maximum gene expression from earlier to later LT. Examples of individual genes are highlighted, reflecting different stages of
de-differentiation. Gene set enrichment is shown on the right. (E) scRNA-seq data from melanoma cells and cytotoxic T cells were subjected
to ligand-receptor analysis using the LIANA software (https://saezlab.github.io/liana/). Circos plots of ligand-receptor interactions between
different melanoma cell differentiation subtypes (lower part, in different colors) and T cells (upper part, in blue). The indicated genes of
melanoma subclusters in the lower parts encompass different melanoma subclusters. The indicated genes of T cells in the upper parts
encompass all receptors as arrowheads of different melanoma cell ligands. The figure legend for melanoma subclusters in panel (C) also
applies to the inner rings of the circus plots in (E). (F)Melanoma patient survival data from The Cancer Genome Atlas (TCGA). Survival
curves of melanoma patients with high and low levels, respectively, of CD58 and CD2 expression using patient data from TCGA. “High-high”
indicates high CD58 and high CD2 expression; “low-low” indicates low CD58 and low CD2 expression. Analysis was performed using
cSurvival (https://tau.cmmt.ubc.ca/cSurvival/). Significance levels were determined by a Cox proportional hazards model and Log-rank test.
(G) Activation of autologous CD8+ tumor-infiltrating lymphocytes (TILs) by melanoma cells in co-culture in the presence or absence of
antibodies blocking CD58 and/or CD59. Left: Quantification of IFN-γ-producing CD8+ T cells. Fold change is given as the mean±SEM from
three independent experiments. The first column indicates IFN-γ-production in T cell monoculture. Right: Cytotoxicity of CD8+ TIL against
autologous Ma-Mel-86c cells in the presence or absence of an anti-CD58 blocking antibody. The percentage of killed melanoma cells is given
as the mean±SEM from three independent experiments. Significantly different experimental groups are indicated: * P < 0.05, ** P < 0.01 by
two-tailed paired t-test. (H) Recombinant proteins were generated for human CD2, CD58, and CD59. Bio-layer interferometry (BLI)
measurements for recombinant CD2 protein interaction with recombinant CD58, CD59, and a negative control protein (SARS-CoV-2 receptor
binding domain) were performed. Binding between these interaction partners was measured with CD58, CD59, and negative control
concentrations ranging from 3.33 µmol/L to 0.01 µmol/L, with baseline at c = 0 µmol/L. The dissociation constant (Kd) for CD58 with CD2
was calculated as 0.99 (R2 of concentration response curve). (I) Single-cell Assay for Transposase Accessible Chromatin sequencing
(scATAC-seq) was performed on single-cell nuclei from melanoma cells of different samples and analyzed by CellRanger software (10x
Genomics). Peak information was converted to genomic ranges using the GenomicRanges package
(https://bioconductor.org/packages/release/bioc/html/GenomicRanges.html). A representative sample from 6 measured samples is shown,
with signal tracks from the indicated genomic region. This figure refers to melanoma sample MM11 (immune hot). Signal tracks were
generated using the RunChromVAR function in the Signac package (https://github.com/stuart-lab/signac). Co-accessible links were
determined with the Cicero R package (https://github.com/cole-trapnell-lab/cicero-release). (J) The highlighted peak upstream of CD2 in
melanoma samples was analyzed for binding motives of transcription factors. The analysis was conducted using the RunChromVAR function
from the Signac package (https://github.com/stuart-lab/signac/issues/9), in combination with the JASPAR2020 motif databank, based on the
BSgenome.Hsapiens.UCSC.hg38 genome (https://jaspar2020.genereg.net/tools/;
https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.40/). Binding motifs at the indicated genomic position are shown for
different transcription factors in two representative melanoma samples (MM06; immune hot and MM09; immune intermediate).
Abbreviations: ATAC, Assay for Transposase Accessible Chromatin; Fb, fibroblasts; KC, keratinocytes; premit, premitotic; postmit,
postmitotic; gl, glands; LE, lymphatic endothelial cells; VE, vascular endothelial cells; Tcyt, cytotoxic T cells; Tdp, double (CD4 and CD8)
positive T cells; Teff_mem, effector memory T cells; Treg, regulatory T cells; NK, natural killer cells; cDC1/2, type 1 and type 2 conventional
dendritic cells; pDC, plasmacytoid dendritic cells; LT, latent time; Pt., patient; Ma-Mel-86c, Mannheim melanoma cell line 86c; TCGA, The
Cancer Genome Atlas; TIL, tumor-infiltrating lymphocytes; BLI, Bio-layer interferometry; SARS-CoV-2, severe acute respiratory syndrome
coronavirus type 2.

Serpin Family E Member 2 (SERPINE2) has been iden-
tified as a mediator of melanoma metastasis and tumor
progression [5].
Next, we performed regulon analysis (https://github.

com/aertslab/pySCENIC) of the melanoma cell clusters,
which refers to a group of genes regulated by the same
transcription factor [6]. We identified a number of reg-
ulons associated with nc-like and more dedifferentiated

melanoma cells, such as Retinoid X Receptor Gamma
(RXRG), SRY-Box Transcription Factor 2 (SOX2), CAMP
Responsive Element Binding Protein 5 (CREB5), BTB
Domain And CNC Homolog (BACH1), and Transcrip-
tion Factor 12 (TCF12), as well as those associated with
more differentiated melanocytic cells, such as Melanocyte
Inducing Transcription Factor (MITF), SOX10, Paired Box
3 (PAX3), TEA Domain Transcription Factor 1 (TEAD1),
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and SOX4 (Supplementary Figure S4). In line with this,
it is known that BACH1 activates the expression of genes
involved in cell motility andmetastasis and plays an essen-
tial role in both innate and adaptive immune responses [7].
Taken together, melanoma cell dedifferentiation processes
may be defined by an activated immune response and by
specific transcriptional mechanisms.
Next, we focused on melanoma-immune cell interac-

tions by analyzing ligand-receptor interactions with an
emphasis on cytotoxic T cells, using the LIANA software
(https://saezlab.github.io/liana/) (Figure 1E; Supplemen-
tary Tables S7 and S8). For a more focused analysis, we
removed HLA and collagen genes from the subsequent
analysis. As shown in Figure 1E, CD2 on cytotoxic T cells
was a major interaction partner for several molecules in
melanoma cells, especially CD58 and CD59. This interac-
tion was most prominent in hot tumors. A recent study
using a CRISPR/Cas knockout screen provided evidence
that the CD58-CD2 interaction may indeed be a major
mechanism of melanoma immune control [8]. Our data
suggest that CD58 and CD59, both interacting with CD2,
may control the T cell-melanoma cell interaction. In con-
trast, the most prominent interaction in cold tumors was
between Fibronectin1 (FN1) and Integrin Subunit Beta 1
(ITGB1). Fibronectin-integrin β1 interaction is known to
antagonize integrin β3 and thusmight have an inactivating
effect on integrin downstream signaling [9].
Immunofluorescence staining for CD58, CD59 and

CD2 expression in melanoma/nevus samples (Supple-
mentary Figure S5; Supplementary Table S9) showed
higher numbers of CD2+ immune cells in the vicinity of
melanoma cells in hot/intermediate tumors compared to
cold tumors/nevi. However, nevi do express both CD58
and CD2. Moreover, CD58 expression was higher in
hot/intermediate samples and increased with increasing
LT (Supplementary Figure S5).
Using data from The Cancer Genome Atlas (TCGA)

melanoma cohort (https://www.genome.gov/Funded-
Programs-Projects/Cancer-Genome-Atlas), we demon-
strated that highCD58, togetherwith highCD2 expression,
significantly improved the prognosis of melanoma
patients (Figure 1F, Supplementary Figure S6). Similarly,
CD2 expression was associated with overall survival
in a recently published melanoma immunotherapy
study, making it a possible target for immunotherapy
(Supplementary Figure S6).
Next, we used isolated tumor-infiltrating lymphocytes

(TILs) enriched in tumor-reactiveCD8+ T cells from tumor
tissue of a melanoma patient. As shown in Figure 1G
and Supplementary Figure S7, T cell activation, as deter-
mined by intracellular Interferon γ (IFN-γ) expression,was
reduced by blockade of CD58, but not of CD59, on autolo-
gous melanoma cells. Moreover, melanoma cell killing in

the presence of T cells could be inhibited by the addition
of the anti-CD58 antibody (Figure 1G).
Soluble recombinant extracellular domains of CD58,

CD59 and CD2 were then used to measure the binding
affinity of CD2 toCD58 andCD59, respectively (Figure 1H).
These analyses showed high binding activity of CD2 to
CD58, but none to CD59, which further supports an acti-
vating role of CD58-CD2, but not CD59-CD2. Overall, in
addition to its known inactivating capacity on the mem-
brane attack complex, CD59 appears to require a specific
conformation to be active in the CD2 immune context,
which may explain its inactivity in our settings.
Finally, scATAC-seq data of sixMM and one Nev sample

were analyzed in T cell populations (Figure 1I; Supple-
mentary Tables S10 and S11). Among the top ten open
chromatin regions in T cells from immune hot sam-
ples were CD3D, Interferon Gamma (IFNG), CD28, CD2,
CD3G, and Granzyme A (GZMA). In line with this, CD2
expression was most prominent in the T cell and NK
cell clusters of the scATAC-seq UMAP and scRNA-seq
UMAP (Supplementary Figure S8). By analyzing chro-
matin accessible networks (CAN), an open chromatin
region was observed immediately upstream of the CD2
gene (Figure 1I), which harbored a binding motif for var-
ious transcription factors, including CAMP Responsive
Element Binding Protein 1 (CREB1), Zinc Finger Pro-
tein 143 (ZNF143), MYB Proto-Oncogene Like 2 (MYBL2),
Recombination Signal Binding Protein For Immunoglob-
ulin Kappa J Region (RBPJ), Jun Proto-Oncogene, AP-1
TranscriptionFactor Subunit (JUN), JunBProto-Oncogene
(JUNB), andFOSLike 2,AP-1 TranscriptionFactor Subunit
(FOSL2) (Figure 1J, Supplementary Figure S8, Supplemen-
tary Figure S9). RBPJ might play an important role in this
setting since it has been associated with T cell immune
response in hepatocellular carcinoma and may thus be a
target in immunotherapy [10].
Taken together, a detailed map of melanoma single-

cell differentiation steps in MM and Nev lesions is
presented, supporting a developmental trajectory of dif-
ferent melanoma cellular subpopulations towards a high
immune phenotype. The CD58-CD2 interaction appears
to play a prominent role in the melanoma immune
response, which may be exploited in future clinical
trials.
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