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Abstract
Cancer immunotherapy offers renewed hope for treating this disease. However,
cancer cells possess inherent mechanisms that enable them to circumvent each
stage of the immune cycle, thereby evading anti-cancer immunity and leading to
resistance. Various functionalized nanoparticles (NPs), modified with cationic
lipids, pH-sensitive compounds, or photosensitizers, exhibit unique physico-
chemical properties that facilitate the targeted delivery of therapeutic agents to
cancer cells or the tumor microenvironment (TME). These NPs are engineered
to modify immune activity. The crucial signal transduction pathways and mech-
anisms by which functionalized NPs counteract immunotherapy resistance are
outlined, including enhancing antigen presentation, boosting the activation and
infiltration of tumor-specific immune cells, inducing immunogenic cell death,
and counteracting immunosuppressive conditions in the TME. Additionally,
this review summarizes current clinical trials involving NP-based immunother-
apy. Ultimately, it highlights the potential of nanotechnology to advance cancer
immunotherapy.
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1 INTRODUCTION

Cancer immunotherapy offers new hope for treating can-
cer by leveraging the patient’s immune system to target
tumor cells. However, possess inherent mechanisms that
enable them to evade each stage of the immune cycle,
leading to resistance [1]. Despite significant advances,
developing resistance to these therapies remains a major
challenge [1, 2].
The integration of nanotechnology into cancer treat-

ment has opened new avenues to combat cancer resis-
tance. Nanoparticles (NP), ranging from 1 to 100 nanome-
ters in size, exhibit unique physicochemical properties
that enable the targeted delivery of therapeutic agents
directly to cancer cells and allow for the modulation
of immune activity. In cancer immunotherapy, NP-based
nanomedicine is designed to reach target sites, facili-
tate biomolecule interactions, promote cell-specific inter-
nalization, deliver cargo to targeted subcellular com-
partments, and enhance immune responses [3]. NPs
can deliver tumor-associated antigens and adjuvants to
antigen-presenting cells (APCs), such as dendritic cells
(DCs) [4]. Tumor-targeted nanomedicines can create
a subset of tumor-specific immune cells by delivering
immunomodulatory cytokines, inducing immunogenic
damage to cancer cells, promoting the infiltration of anti-
tumor immune cells, and enhancing interactions with
cancer cells [5]. Additionally, the tumormicroenvironment

(TME) can adversely affect the infiltrating immune cells,
and NPs can modulate TME to reverse immunotherapy
resistance [6].
In this review, we discuss recent findings in address-

ing immunotherapy resistance using various function-
alized NPs modified with cationic lipids, pH-sensitive
compounds, or photosensitizers. The key signal transduc-
tion pathways and mechanisms by which functionalized
NPs reverse immunotherapy resistance are outlined. Cur-
rent clinical trials involving NP-based immunotherapy
are summarized. Ultimately, this review aims to provide
insights into the potential of nanotechnology in enhanc-
ing cancer immunotherapy and to inspire further research
in this promising field.

2 MECHANISMS OF CANCER
IMMUNOTHERAPY RESISTANCE ALONG
THE IMMUNITY CYCLE AND
POTENTIAL SOLUTIONS

Cancer immunotherapy is a transformative approach
in oncology, aimed at restoring and manipulating
the immune system to combat cancer. This therapy
encompasses various modalities such as non-specific
immunotherapies, immune checkpoint inhibitors (ICIs),
cellular therapies, and cancer treatment vaccines, each uti-
lizing different mechanisms to induce antitumor activity
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[7, 8]. The immune system eliminates tumor cells through
a process known as the “tumor immune cycle [9].” This
cycle involves the production and release of tumor-
associated antigens (TAAs), the capture and processing
of neoantigens by APCs, the activation of effector T cells,
the infiltration of activated tumor-specific T cells through
the TME, and the engagement of T cell receptors (TCR)
with MHC complexes presenting the antigen, leading to
the recognition and destruction of target cancer cells and
initiating a new cycle of immune response [9]. However,
any stage of this cycle may be disrupted, contributing
to the development of an immunosuppressive TME,
tumor immune escape, and ultimately immunotherapy
resistance [10]. The immune system and the TME are
intricately complex, with various mechanisms interacting
to establish a dynamic immunosuppressive state that
fosters tumor immunotherapy resistance.
In some cancers, particularly those with a low tumor-

mutation burden or low immune-cell infiltration, an
adequate immune response may not be triggered ini-
tially. This can hinder the maturation of key APCs,
such as DCs, leading to an impaired immune response.
Research has demonstrated that cancer vaccines can
induce APC maturation and T cell activation [11].
Additionally, certain cytokines, including Interferon-α,
granulocyte-macrophage colony-stimulating factor (GM-
CSF), Toll-like receptor (TLR) agonists, and stimulators of
interferon genes (STING) agonists, are known to enhance
the maturation of DCs and activate antigen-specific T cells
[12].
After immune cell priming and activation, any defect

affecting immune cell trafficking, migration, and infiltra-
tion into the TME can undermine anticancer immunity.
Cytokines within the TME influence the migration and
recruitment of immune cells to the tumor site. Certain
cytokines, such as chemokine ligand (CXCL) 10 and IFN-γ,
initiate chemotactic functions that attract cytotoxic T cells
[13]. Delivering cytokines that promote T cell infiltration
and blocking immunosuppressive cytokines may reverse
immunotherapy resistance.
Cancer cells that evade immune recognition can pro-

liferate as resistant variants. Tumors may modify the
expression of immune checkpoint proteins, facilitating
immune escape. The inhibition of immune checkpoints,
such as programmed death 1 (PD-1), programmed death
ligand 1 (PD-L1), Lymphocyte activation gene-3 (LAG-
3), and T cell immunoglobulin and mucin domain-
containing protein-3 (TIM-3), is a standard approach in
immunotherapy [14], given their role in promoting T cell
non-responsiveness and immune tolerance [15]. Currently,
Food and Drug Administration (FDA)-approved immune
checkpoint blockades (ICB) include anti-cytotoxic T
lymphocyte-associated antigen 4 (CTLA4), anti-PD-1,

and anti-PD-L1 antibodies. Reducing or blocking the
expression of these proteins and their pathways can
diminish tumor immune escape and potentially reverse
immunotherapy resistance.
Immunogenic cell death (ICD) activates the host’s adap-

tive immune response through antigens from dead cells.
Essential for inducing ICD are damage-associatedmolecu-
lar patterns (DAMPs) such as calreticulin (CRT) exposure,
ATP, type I interferon (IFNs) expression, and the release of
the non-histone nuclear protein high mobility group box 1
(HMGB1) [16].
The intricate dynamics of tumor immunity underscore

the pivotal role of the TME in the efficacy of can-
cer immunotherapy [17]. Within the TME, stromal and
tumor cells can obstruct immune recognition and surveil-
lance, alter cellular metabolism, and impact angiogenesis,
thereby impeding immune cell circulation and contribut-
ing to resistance [17]. Thus, a thorough study of these cells
is essential to enhance targeting of the TMEand counteract
immunotherapy resistance.

3 STRATEGIES OF DIFFERENT NPS IN
COUNTERACTING IMMUNOTHERAPY
RESISTANCE

NPs have become a powerful tool in cancer immunother-
apy due to their versatile structure, composition, and
functionalization. These properties enable NPs to effec-
tively manipulate and deliver immunological components
to specific target locations [3, 4]. Nanomedicine enhances
the targeting of immune cells and the release of drugs,
adjuvants, and cytokines. It also improves the release and
presentation of tumor antigens, thereby augmenting the
treatment of cancers with low immunogenicity. The bind-
ing of NPs to DCs and the subsequent release of their cargo
facilitate the presentation of tumor antigens to T cells,
leading to T-cell activation [18, 19]. This process enhances
the immune response mediated by cytotoxic T lympho-
cytes (CTLs), and modifies the immunosuppressive TME.
Additionally, due to its increased permeability and reten-
tion in target cells, this approach holds significant thera-
peutic potential [20]. Customized polymeric nanocarriers
(such as nanospheres, micelles, and dendrimers), inor-
ganicNPs (including goldNPs andmesoporous silicaNPs),
and lipid-based NPs (like liposomes and lipid NPs) are
extensively used in cancer immunotherapy [20, 21]. Each
type of NP presents unique advantages and limitations,
influencing the efficacy of immunotherapy differently. A
detailed comparison of these NP types is presented in
Table 1.
Tumor development is accompanied by various pro-

tein mutations affecting immune activity. Overcoming
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6 KONG et al.

immunotherapy resistance with a single functional nano-
agent proves challenging due to the immunosuppressive
nature of cancer cells. Significant efforts are necessary
to induce a robust T cell immune response. Multianti-
gen delivery targets multiple mutant proteins, promotes
antigen endosomal escape, enhances cellular uptake, and
stimulates cell-mediated immune responses [19, 38]. Fur-
thermore, incorporating adjuvants and other antigens into
the NP delivery system improves immunotherapy out-
comes through variousmechanisms [39–42]. This research
provides valuable insights into the innovative and effec-
tive multifunctional nano-platform for addressing key
mechanisms of immune drug resistance.

4 NP-BASED DRUG DELIVERY
SYSTEMS ENHANCE THE TUMOR
IMMUNE CYCLE TO OVERCOME
RESISTANCE TO IMMUNOTHERAPY

4.1 Targeted delivery of NPs to promote
APCmaturation and T cell activation

DCmaturation is essential for initiating immunity. In light
of this, researchers have focused on antigen-loaded NPs,
which can be conjugated with targeted ligands to improve
biocompatibility and responsiveness to acidic environ-
ments. Targeted NP delivery to DCs enhances mRNA
translation efficiency and stimulates signaling pathways
that promote DC maturation [3, 38, 43]. Additionally, NPs
target critical siteswithin the immune cycle, such as reduc-
ing inhibitory checkpoints on T cells and enhancing T cell
activation [44].
Nanoparticulate RNA vaccines precisely target DCs,

increasing RNA uptake and inducing a potent type-I-
IFN-driven immune response to combat immunotherapy
resistance [45]. An mRNA-based cancer vaccine inte-
grates antigen-coded mRNA, CpG oligodeoxynucleotides,
an acidic-responsive DNA sequence, and a DC-targeting
aptamer. This vaccine forms aggregates in the acidic envi-
ronment of lysosomes, escaping into the cytoplasm to
increasemRNA translation efficiency significantly. Activa-
tion of the TLR9 signaling pathway considerably enhances
DC maturation and pro-inflammatory cytokine secre-
tion [3] (Figure 1A). Mn3O4 NPs, combined with lipid
NPs (LNPs), form a hybrid delivery vehicle (MnLNPs)
for mRNA vaccine fabrication. MnLNPs reduce reactive
oxygen species (ROS) production, increase intracellular
ATP levels through oxygen release, and enhance mRNA
translation efficiency. Mn2+ from MnLNPs activates the
STING signaling pathway, promoting DC maturation and
antigen presentation ability [4] (Figure 1B). A dual-STING-
activating micelle system releases small-molecule agonists

to rapidly activate STING following endocytosis. Concur-
rently, a pH-sensitive polymeric agonist from the poly-
mer carrier buffers lysosomal protons, preventing STING
protein degradation and continuously providing STING
activation signals to enhance DC maturation and tumor
antigen presentation [43].
NPs effectively manipulate or deliver immunological

components to optimal target sites. Researchers isolated
autophagosomes from the pleural and ascitic fluid of
cancer patients, integrating autophagosome-derived anti-
gens and two adjuvants (TLR-9 and STING agonists)
to form nanovaccines. These nanovaccines significantly
enhance APC maturation through effective antigen and
adjuvant delivery to lymph nodes [38]. A novel nano-
modulator specifically targets DCs in tumor-draining
lymph nodes, promotes the maturation of DCs through
synergistic activation of TLR4 and TLR7/8 pathways, and
prevents T cell exhaustion by reducing the expression of
inhibitory immune checkpoints (such as PD-1 and TIM-
3) on the surface of T cells by targeting siRNA [44]
(Figure 1C).
NPs not only deliver immunological components to

DCs more effectively but also enhance CD8+ T cell acti-
vation following antigen presentation. An NP co-loaded
with tumor antigen and a STING agonist (cdGMP) was
integrated into the cavity of OVA epitope self-presenting
dendrosomes (ODs) to construct the dendrosome ODs/NP
(cG, OVA) nanovaccines. DCs immunized with ODs/NP
(cG, OVA) displayed more epitopes and promoted anti-
gen presentation to T cells, inducing heightened levels of
antigen-specific T cells. Additionally, cytoplasmic cdGMP
interacts with STING on the DC endoplasmic reticulum
membrane, stimulating downstream signaling pathways
to enhance DC maturation [19] (Figure 1D). Another
nanostructure significantly activates the NF-κB signaling
pathway in DCs through K+ efflux and Ca+ influx, thereby
improving DC function. It also significantly reduced the
invasion of TAMs, MDSCs and Tregs in the tumor, and
increased the number of CD8+ T cells infiltrated by the
tumor [18] (Figure 1E).

4.2 NP-enhanced T cell infiltration

NPs counteract immunotherapy resistance by increas-
ing mRNA translation efficiency and promoting T cell
infiltration into tumor sites. This is achieved by deliv-
ering cytokines favorable for T cell infiltration and by
blocking immunosuppressive cytokines [46, 47]. A lipid
NP vector system delivers mRNA encoding Interleukin
(IL)-2 and IL-7, whose synergistic effects significantly
enhance CD8+ T cell infiltration and increase IFN-γ and
tumor necrosis factor-α (TNF-α) secretion. By boosting the
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KONG et al. 7

F IGURE 1 Targeted delivery of NPs to promote DC maturation and T cell activation. (A) A nano-vaccine formed aggregates in the acidic
environment of lysosomes to increase mRNA translation and enhance DC maturation. (B) A nano-vaccine (MnLNP) reduced ROS
production, increased intracellular ATP levels through oxygen release, and enhanced mRNA translation efficiency. Mn2+ from MnLNPs
activated the STING signaling pathway and promoted DC maturation. (C) A novel nano-regulator specifically targeting DCs promoted the
maturation of DCs through synergistic activation of TLR4 and TLR7/8 pathways, and prevented T cell exhaustion by reducing the expression
of inhibitory immune checkpoints (such as PD-1 and TIM-3) on the surface of T cells by targeting siRNA. (D) A nano-vaccine was co-loaded
with tumor antigen and a STING agonist. DCs immunized with it displayed more epitopes, promoting antigen presentation to T cells.
Additionally, activation of STING pathways enhanced DC maturation. (E) A nanostructure significantly activated IL-β secretion in DCs
through K+ efflux and Ca+ influx, thereby improving DC maturation. Abbreviations: ATP, Adenosine triphosphate; DC, Dendritic cell; I-IFN,
I-Interferon; IL-β, Interleukin-β; MnLNP, Mn3O4 nanoparticle combined with lipid nanoparticle; NPs, Nanoparticles; PD-1, Programmed
death 1; ROS, Reactive oxygen species; STING, Stimulator of interferon genes; TIM-3, T cell immunoglobulin domain and mucin domain-3;
TLR4, Toll-like receptor 4; TLR7/8, Toll-like receptor 7/8.

activity and function of tumor-infiltrating CD8+ T cells,
robust anti-tumor immune responses are induced locally
[46]. A calcium carbonate NP, stabilized and modified
with anti-PD-1 antibody and 12-myristate 13-acetate, tar-
gets delivery and drug synergy. PD-1-mediated endocytosis
enters CTLs, significantly raising intracellular calcium lev-
els, activating the NF-κB signaling pathway, and inducing
T cells to express CD69 and secrete key cytokines like
IFN-γ and TNF-α, thereby enhancing CTL’s tumor infiltra-
tion and killing capabilities [48]. A low-intensity focused
ultrasound-guided immunotherapy strategy, termed “open
source and slow down,” enhances CD8+ T cell infiltration

and activity through sequential delivery of CXCL10, IL-
2, and anti-PD-L1, achieving a 3.39-fold increase in CD8+
T cell numbers compared to traditional treatments [49].
Another teammitigated the immunosuppressive microen-
vironment and boostedCD8+ T cell infiltration by applying
a self-assembling peptide that forms hydrogels on tumor
cell surfaces, inhibiting exosome dissemination [47]. This
nanosystem carries enzymes that relieve tumor hypoxia;
the expression in exosomes significantly regulates, partic-
ularly in T cell signaling processes, enhancing CD8+ T
cell infiltration and ameliorating the immunosuppressive
microenvironment [47].
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8 KONG et al.

4.3 Reversal of Tumor Immune Escape
by NPs

A broad array of nanomedicine-mediated strategies has
been employed to counter tumor immune escape. Effective
approaches such as the photothermal therapy (PTT) [42,
50] and the photodynamic therapy (PDT) [51] are exten-
sively utilized. Additionally, functional NPs aremore effec-
tively conjugated with targeted ligands by co-assembling
with biological components like cell membranes [40], bac-
teriophages [52], and bacteria [41, 42] to enhance biocom-
patibility. Recent advancements in various functionalized
NPs for reversing tumor immunotherapy resistance are
explored herein.
Researchers encoded anti-PD-L1 and anti-CD9 nanoan-

tibodies into E. coli and encapsulated the photosensitizer
within a metal-organic framework. Near-infrared (NIR)
light irradiation controlled the release at the tumor site,
targeting tumor-derived exosomes (TDE). This signifi-
cantly reduced TDEuptake in normal cells, promoted TDE
clearance by macrophages, decreased immune escape,
and enhanced T cell infiltration at tumor sites [50].
Using CRISPR-Cas9 and a photosensitizer as the core
nanoplatform, CRISPR-Cas9 substantially reduced PD-
L1 expression (inhibition rate of 83.4%) and NIR laser
irradiation generated ROS, enhancing T cell activity
and impeding tumor immune escape. Potent induction
of tumor cell death markedly increased CD8+ T cell
infiltration [51].
Functional NPs can be assembled with biological com-

ponents to more precisely conjugate with targeted ligands
and block immune checkpoint receptors or diminish
immune checkpoint expression. A tumor-targeting fila-
mentous phage precisely blocks the PD-1/PD-L1 pathway,
activating an immune response against tumors. This phage
effectively targets tumors in a mouse melanoma model,
enhances CD8+ T cell immune infiltration, and signifi-
cantly curtails tumor growth [52] (Figure 2A). Researchers
developed PD-1 transfected macrophage membrane NPs
(PMMNPs) by extracting the cell membrane from PD-1
transfected macrophages and co-assembling it with lipids.
These NPs boost macrophage phagocytosis and T cell cyto-
toxic activity by targeting and binding to CD47 and PD-L1
on cancer cell surfaces, thereby obstructing PD-L1 and
CD47. The anti-tumor efficacy of this systemwas validated
in vivo in a mouse model [40] (Figure 2B). A thermosensi-
tive engineered bacterium (15&15R@VNP), combinedwith
MWA, locally induces the expression of the IL-15 and IL-
15Rα complex within the TME, enhancing the anti-tumor
immune response. The bacteria were further optimized
to co-express IL-15&IL-15Rα and soluble PD-1 (sPD-1) for
synergistic anti-tumor effects through checkpoint block-
ade and T-cell reactivation [41] (Figure 2C). Another

system combines photothermal NPs and genetically engi-
neered bacteria that attach to the bacterial surface via
pH-responsive Schiff base bonds. When accumulated at
the tumor site, the NPs detach from the bacteria, enter
tumor cells, facilitate gene transfection, induce apopto-
sis in tumor cells, and reduce PD-L1 expression, thereby
alleviating the immunosuppressive TME. NIR-II light illu-
mination further enhances systemic immune responses
and promotes sustained IL-2 expression, ultimately signif-
icantly boosting anti-tumor effects [42] (Figure 2D).
Beyond PD-1/PD-L1, emerging functionalized NPs also

target additional pathways to reverse immune escape
strategies. Researchers utilized iron oxide hydroxide
(FeOOH) nanocomposites to mask the surface of tumor-
derived exosomes, blocking immune escape signals such
as CD47. The masked exosomes (mTEVs) are more effec-
tively engulfed by DCs and macrophages both in vitro and
in vivo, proving that nanomasking effectively counteracts
the suppressive effects of immune escape signals such as
CD47 [53]. Researchers have devised a therapeutic plat-
form comprising modified gold nanocups (Au nanocups)
and anti-CD24 antibodies. This platform enhances tumor
targeting through surface modification with fucoidan and
precisely controls drug release via photothermal effects.
Blocking CD24 effectively eliminates the CD24-Siglec-
10 signaling pathway, enhancing macrophage recognition
and phagocytosis of tumor cells to inhibit CD24-mediated
tumor immune escape [54].

4.4 NPs-mediated targeted delivery to
induce ICD

Increasing evidence supports thatNP-mediated drug deliv-
ery induces ICD in cancer immunotherapy by enhancing
drug accumulation in tumors and improving the target-
ing of tumor delivery, thus increasing the efficiency of
ICD inducers [55, 56]. The effectiveness of ICD, induced
by drug-loaded liposomes, is well-established. Innovative
functional NPs enhance ICD by optimizing tumor target-
ing, increasing ROS accumulation, and triggering copper
death, among other mechanisms [57–60]. Nanoplatforms
integrated with photothermal therapy (PTT) and pho-
todynamic therapy specifically target tumors in acidic
environments, achieving efficient accumulation at tumor
sites [55, 56]. Functional NPs alter the redox balance of
tumor cells by releasing nitric oxide (NO), metal ions,
activating enzymes, and catalysts, thus promoting ROS
accumulation and boosting the ICD of tumor cells [58, 61–
63]. Moreover, nanoplatforms induce ICD in tumor cells
through copper deathmechanisms andmitochondrial trig-
gers [60, 64]. This section discusses recent studies on NPs
used to transport and deliver ICD inducers to tumor cells,
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KONG et al. 9

F IGURE 2 Strategies of the reversal of tumor immune escape by NPs. (A) NPs block the PD-1/PD-L1 pathway. A tumor-targeting
filamentous phage precisely blocks the PD-1/PD-L1 pathway, activating an immune response against tumors. PMMNPs boost macrophage
phagocytosis and T cell cytotoxic activity by targeting and binding to CD47 and PD-L1 on cancer cell surfaces, thereby obstructing PD-L1 and
CD47. (B) NPs express competitors to block immune checkpoints. An engineered bacterium (15&15R@VNP) expresses IL-15&IL-15Rα and
sPD-1 for synergistic anti-tumor effects through checkpoint blockade and T-cell reactivation. (C) NPs downgrade PD-L1 expression. (D)
NIR-II light-triggered engineered bacterium accumulate at the tumor site, and the NPs detach from the bacteria, enter tumor cells, facilitate
gene transfection and reduce PD-L1 expression. Abbreviations: CD, Cluster of differentiation; IL-15, Interleukin-15; IL-15Rα, Interleukin-15α;
NPs, Nanoparticles; PD-1, Programmed death 1; PD-L1, Programmed death ligand 1; PMMNPs, Programmed death 1 transfected macrophage
membrane nanoparticles; SIRP-α, Signal regulatory protein α; sPD-1, soluble PD-1.

aimed at promoting immunostimulation and combating
resistance in cancer immunotherapy.
The ability of chemotherapeutic drug-conjugated lipo-

somes to trigger ICDmakes themparticularly attractive for
immunotherapy applications. Upon drug delivery, these
liposomes can induce cellular stress, provoke the release
of danger signals, and activate the immune response, lead-
ing to enhanced tumor-specific immunity. This process not
only enhances the therapeutic effect of the drugs but also
helps reprogram the tumor microenvironment (TME) to
be more responsive to subsequent immune attacks. Lipo-
somal formulations such as Doxil R© and Onivyde R© are
FDA-approved for treating specific cancers, such as breast
cancer and pancreatic cancer. These formulations not only
enhance drug accumulation in tumor tissues through the

enhanced permeability and retention (EPR) effect but
also induce ICD, promoting the recruitment of DCs and
enhancing the activation of the immune system [65].
Through the synergistic effects of Fe3O4-mediated mag-

netic targeting and the cell membrane-bound functional
proteins, PD-1 and Lymphocyte Function-associated Anti-
gen 1, the biomimetic nanoplatform selectively accumu-
lates at tumor sites. This platform concurrently admin-
isters photothermal therapy, induces calcium overload,
obstructs immunosuppressive molecules, and promotes
apoptosis via the cell membrane-associated apoptosis-
related factor ligand, ultimately triggering ICD. This pro-
cess releases TAAs, which catalyze the maturation of DCs,
thereby suppressing primary tumor growth effectively [55].
Additionally, the PEG2000-SiNcTI-Ph/CpG-ZIF-8@CM
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10 KONG et al.

biomimetic nanoplatform, cloaked by CD47 protein on its
surface, eludes macrophage phagocytosis, prolongs its cir-
culatory half-life, and targets tumors efficiently via the PD-
1 protein, enabling substantial tumor-specific accumula-
tion. Under tumor-specific conditions and laser exposure,
this platform activates PDT, causing apoptosis in CT26
tumor cells and fostering an anti-tumor immune response
by enhancing DCs’ uptake of CpG and blockade of PD-
L1 [56]. Furthermore, the Tm@PDA-GA nano-regulator
combines photothermal therapy (PTT) with vascular nor-
malization strategies to bolster the infiltration of immune
cells into tumors and amplify the immune response against
tumors. This nano-regulator precisely delivers therapeu-
tic agents within the TME, complementing PTT with
anti-PD-L1 immunotherapy to mitigate tumor growth and
metastasis in triple-negative breast cancer (TNBC) [39].
The acidic TME propels a nanomotor system, PCaP-

motor, which demonstrates enhanced motility and drug
release, significantly increasing drug accumulation and
penetration within tumor cells. This system effectively
impedes the CDK12 pathway and its downstream signal-
ing, inducing DNA damage, apoptosis, and ICD in tumor
cells. Additionally, it supports the maturation of DCs and
infiltration of CTLs, thereby potentiating the efficacy of
immune checkpoint inhibitor therapy [5]
A dual-ligand, bimetallic framework, Cu(PBA-NO), lib-

erates NO under ultrasound stimulation, fostering ROS
buildup by depleting intracellular glutathione. This dis-
rupts the redox equilibrium in tumor cells, enhancing
their ICD. The nanomedicine subsequently augments the
body’s immune defense against tumors by releasing TAAs,
promoting DC maturation, and activating T cells [61].
Additionally, Zn-ZIF in the acidic tumormilieu andUCNP
under 980 nm light transform NIR light into visible light,
activating the VChR1 channel to increase Zn2+ influx. The
concomitant release of metal ions and ROS production
markedly raises oxidative stress in tumor cells, promoting
apoptosis, DC activation, enhanced CD8+ T cell infil-
tration, and secretion of immune cytokines like TNF-α
and IFN-γ [58]. The Co-TB COF nanosystem, designed
to generate substantial ROS through ultrasound activa-
tion, successfully induces Gasdermin D-mediated pyrop-
tosis in tumor cells and enhances tumor immunogenicity.
ROS release further activates STING agonists, enhancing
the STING signaling pathway, improving tumor vascula-
ture, and facilitating effector T cell infiltration, thereby
augmenting the impact of the immunotherapy [59]. Addi-
tionally, a copper-based nano-inducer, produces extensive
ROS in the TME through various enzymatic activities,
initiating tumor cell disulfide apoptosis and pyroptosis
and thus stimulating a robust immune response [62]. An
electron-enriched platinum-based (Pt-based) reactive oxy-

gen catalyst mimics the enzymatic properties to generate
copious amounts of ROS. This ROS production triggers
endoplasmic reticulum stress, inducing ICD and releasing
DAMPs such as CRT and HMGB1, which further bol-
ster DC maturation and antigen presentation, ultimately
enhancing anti-PD-L1 immunotherapy [63]. A nanoco-
valent organic framework-based thermoelectric catalyst,
under NIR laser activation, efficiently produces singlet
oxygen (1O2) and superoxide anion (•O2

−), significantly
boosting the ICD induction efficiency. This substantially
increases the expression of ICD markers such as CRT
and HMGB1, fostering DC maturation, elevating cytokine
secretion such as IL-6, IL-12, and TNF-α, and in murine
tumor models, markedly inhibiting the growth of primary
and distant tumors, thereby significantly enhancing the
anti-tumor immune response [66].
(AuBiCu-PEG NPs) are employed to regulate the

hypoxic TME and deliver Cu2+, markedly enhancing the
induction of ROS stress-induced tumor cell ferroptosis and
cuproptosis while alleviating tumor hypoxia. This poten-
tially boosts efficacy by promoting mitochondrial DNA
damage. In vivo studies indicate that AuBiCu-PEG NPs
enhance ICD, stimulating a strong anti-tumor immune
response [57]. Under NIR-II light, Cu2-xS nanoagents heat
rapidly, causing local high-temperature ablation in the
tumor and inducing the copper death mechanism, which
generates a significant amount of ROS and intensifies
oxidative stress and cell death in tumor cells [60].Studies
have demonstrated that the copper death triggered by Cu2-
xS nanoagents not only causes direct tumor cell death
but also induces ICD by releasing DAMPs such as ATP,
CRT, and HMGB1, significantly enhancing the body’s anti-
tumor immune response. In mouse and rabbit breast
cancer models, Cu2-xS nanoagents, combined with NIR-
II phototherapy, not only effectively eliminate primary
tumors but also inhibit tumor metastasis [60]. A drug-free
small molecule nanoscale assembly platform effectively
triggers mitochondrial dysfunction in tumor cells, lead-
ing to the production of mitochondrial superoxide and
inducing mitochondrial-related apoptosis and paraptosis.
This cell death is accompanied by the release of immuno-
genic molecules such as HMGB1 and ATP, triggering ICD
in tumor cells and enhancing the anti-tumor immune
response [64].

5 NPs IN REMODELING
IMMUNOSUPPRESSIVE TME

NP-based drug delivery system has been applied to
improve immunotherapy via multiple strategies to reverse
immunotherapy resistance
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KONG et al. 11

5.1 NP-based strategies for
counteracting tumor hypoxia

Oxygen deprivation, or hypoxia, within the TME results
from rapid cellular proliferation and aberrant vascular
formation, fueling processes such as angiogenesis, metas-
tasis, and drug resistance [67]. Hypoxia may also promote
immunotherapy resistance by eliciting specific immuno-
logical responses, thus representing a crucial target in
oncology [68]. In response, recent advances in nanotech-
nology have developed NP strategies for delivering oxygen
to hypoxic tumor zones, targeting hypoxia directly, and
producing oxygen within the TME [69].
One approach involves using NP vehicles to transport

oxygen to hypoxic tumor sites. In pancreatic ductal ade-
nocarcinoma (PDAC), hypoxia in the TME can enhance
immune checkpoint expression or fibrosis, thereby com-
plicating immunotherapy. Reversal of hypoxic conditions
in the TME is a potential strategy to overcome ICB resis-
tance. Researchers have developed oxygen microcapsules
stabilized by polydopamine nanoparticles (polydopamine-
NP) that demonstrate excellent stability, bioavailability,
and biocompatibility. These microcapsules can directly
deliver oxygen to tumor sites via interfacial polymer-
ization. It was observed that these microcapsules could
sustain oxygen concentration over extended periods both
in vitro and in vivo, significantly reducing ICB resistance
and enhancing the effectiveness of ICB against PDAC.
Regarding the mechanism, the combination of oxygen
microcapsules with ICB was shown to inhibit the invasion
of tumor-associated macrophages (TAMs) and encourage
the transformation of M2 macrophages to anti-tumor M1
macrophages. Additionally, this therapy increased the
number of Th1 cells and CTLs, facilitating the anti-tumor
immune response within the TME [70]. These findings
indicate that oxygen-delivering NPs could be used to
counteract hypoxia and address immunotherapy resis-
tance, although their clinical efficacy requires further
investigation.
Instead of direct oxygen delivery, NPs may be

equipped with agents that generate oxygen to address the
immunotherapy resistance [6, 71].
Os@Au-TPA, a multifunctional sonosensitizer, pos-

sesses catalase-like catalytic activity that converts H2O2
into O2, reducing tumor hypoxia, promoting the trans-
formation of M2 macrophages into M1 macrophages,
and achieving significant outcomes in tumor sono-
immunotherapy [6]. To tackle the generally hypoxic
tumor environment that complicates immunotherapy,
Yuan and colleagues designed cancer cell membrane-
camouflaged gelatin NPs that deliver the O2-generating
agent catalase and CD73 small interfering RNA (siRNA)
simultaneously. This enhances tumor oxygenation by
producing endogenous O2 and alleviating CD73- adeno-

sine pathway-mediated T cell immunosuppression, thus
enhancing T-cell-specific immunity. The nanosystem
proved effective in treating hypoxia, offering insights into
potential strategies to overcome the PD-1/PD-L1 immune
checkpoint resistance [71]. Zhang et al. designed a PD-1-
expressing mimetic nanoemulsion where perfluorinated
carbons supply oxygen to combat hypoxic tumors and also
serve as a source for PDT. This nanoemulsion delivers PD-
1 proteins and photosensitizers together, contributing to a
synergistic effect of PDT and immunotherapy, potentially
reversing immunotherapy resistance by stimulating DC
maturation and increasing the infiltration of cytotoxic T
lymphocytes [72].
In conclusion, NP-based strategies for targeting hypoxia

within the TME present a promising pathway for enhanc-
ing the efficacy of existing cancer therapies. By improving
oxygen availability and reducing the tumorigenic and
immunosuppressive effects of hypoxia, these nanoformu-
lations may revolutionize the fight against cancer.

5.2 NP strategies for targeting TAMs

Macrophages perform indispensable roles in wound heal-
ing and immunity [67]. In response to specific stim-
uli, they may differentiate into M1 or M2 types. For
instance, exposure to IFN-γ and lipopolysaccharide pro-
motes classical M1 subtype polarization, which inhibits
tumor cell proliferation through IL-12 secretion. Con-
versely, macrophages may transform into M2 types, fos-
tering cancer cell progression and tissue repair [67].
Given their dual role, macrophages act as a double-edged
sword in tumor progression. Initially, TAMs may enhance
tumor immunotherapy, but as the disease progresses, they
promote angiogenesis and become centers of immunode-
pression, reflecting dynamic changes within the TME
[73]. Therefore, developing strategies specifically targeting
TAMs could represent a valuable approach to combating
cancer immunotherapy resistance.

5.2.1 Targeting TAM and modulation of
TAM polarization

The novel Photo-STING agonist employs red blood cells
to mimic the phagocytic delivery mode and accurately tar-
gets tumor tissues and TAMs to activate the cGAS-STING
pathway, inducing a transformation of TAMs from an
immunosuppressive M2 phenotype to a proinflammatory
M1 phenotype. Through photodynamic activation, NPs not
only produce ROS but also initiate mitochondrial DNA
fragmentation, enhancing STING pathway activation,
promoting ICD, DCs maturation, and T cell infiltration
[74]. Macrophages were engineered with Glypican-3
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targeting peptide and were loaded with exosomes carrying
TLR7/TLR8 agonist and indoleamine 2,3-dioxygenase 1
(IDO1) inhibitor. These modified macrophages effectively
targeted tumor cells expressing high levels of Glypican-3
and significantly increased tumor cell phagocytosis.
Exosomes efficiently released TLR7/TLR8 agonists and
IDO1 inhibitors, modulated TAM polarization, curbed
tumor immune escape mechanisms, and activated T cell
anti-tumor activity [75].
Iron-oxide NPs, such as ferumoxytol, approved for treat-

ing iron deficiency symptoms, have been shown to catalyze
the reorientation of macrophages from M2 to M1 types,
thereby inhibiting tumor growth [76]. Another iron-based
NPmodifies TAM-bindingmolecules on S dots, which pos-
sess abundant O2-containing groups on their surface [77].
Once internalized by lysosomes, these NPs release iron,
eliciting ROS and inducing a shift in macrophages from
M2 to M1. Moreover, ultra-tiny NPs have been shown to
enable deeper penetration into cancer tissue [77]. These
findings suggest that leveraging endogenous components
might enhance the efficacy of immunotherapy.
Others have developed a biomimetic formulation tar-

geting tumors that reprograms M2 subtypes and enhances
cancer immunotherapy, incorporating resiquimod (R848)
coated with PLGA and B16-OVA membrane [78]. This
innovative approach targets Toll-like receptors and reori-
ents M2 subtype TAMs.
Tumor vaccines based on Tumor-derived antigenic

microparticles, mimicking their parental cells’ cytosolic
components and biological properties, are promising due
to their highly immunogenic antigens [79]. These NP
strategies have been found to effectively stimulate an
anti-cancer response in various solid tumors.
The Os@Au-TPA sonosensitizer is capable of produc-

ing more than 40-fold more singlet oxygen (1O2) than
a conventional sonosensitizer under ultrasound activa-
tion, markedly enhancing ROS generation efficiency. With
catalase-like catalytic activity, it converts H2O2 to O2,
diminishes tumor hypoxia, and facilitates the transforma-
tion of M2 macrophages into M1 macrophages. Similarly,
a novel Os-doped Au-tri (pyridin-4-yl) amine coordination
structure-based sonosensitizer achieves the same level of
singlet oxygen production and ROS generation efficiency
improvement under ultrasound. This activity also leads to
the conversion of H2O2 to O2, reduction of tumor hypoxia,
and promotion of M2 to M1 macrophage transformation
[6].

5.2.2 Suppression of TAM survival and
function

In an innovative study, NPs were shown to enhance
the uptake of Ibrutinib (IBR), a Bruton tyrosine kinase

inhibitor, by TAMs, thus contributing to immune restora-
tion and tumor suppression [80]. These NPs could effi-
ciently deliver IBR into macrophages, resulting in a
decrease in tumor volume and angiogenesis [80]. The
colony-stimulating factor-1 (CSF-1) - colony-stimulating
factor-1 receptor (CSF-1R) axis is known to induce TIME
formation, and blocking the binding of CSF-1 to CSF-
1R has been identified as an effective strategy to inhibit
TAM transport and reduce tumor immunotherapy resis-
tance. Chen et al. developed TAM-like up-conversion
nano-photosensitizers (NPR@TAMM) by coating TAM
membranes on photosensitizer-loaded up-conversion NPs
[81]. These TAM mimics NPR@TAMMs can selectively
accumulate at tumor sites and bind to the immunomod-
ulatory molecule CSF-1. This interaction reduced the
binding of CSF-1 to endogenous TAM, thereby mitigat-
ing the immunosuppression of the TME and reversing
immunotherapy resistance [81].
Wei et al. created a lipoplex (F-PLP/pBIM) consisting

of a folate-personalized liposome (F-PLP) and a BIM-
S plasmid (pBIM) aimed at simultaneously targeting
cancer cells and folate receptor β-positive macrophages
TAMs. F-PLP/pBIM was found to significantly affect M2
macrophage apoptosis, modifying TIME, and preventing
tumor angiogenesis and progression in LL/2 and A549
tumor models [82].
In essence, NP strategies aimed at targeting TAMs

promise to overcome traditional drawbacks, such as sub-
par solubility, poor circulation, and non-specific deliv-
ery, leading to improved immunotherapeutic outcomes.
However, due to the complex dynamics of TAM polar-
ization, these NP strategies require extensive validation
in clinical trials to assess their therapeutic efficacy.
A polymeric nanolysosome targeting chimera (nano-
LYTAC), targeting the interleukin-4 receptor (IL-4R) in
M2 macrophages, significantly enhanced the degrada-
tion of IL-4R. Nano-LYTAC inhibited the expression
of CD206 and IL-10 in M2 macrophages at low con-
centrations, induced apoptosis, and promoted the infil-
tration of M1 macrophages and effector T cells at
high concentrations [83], thus remodeling the tumor
immune microenvironment and addressing resistance to
immunotherapy.

5.3 Exploiting nanomedicine to
precisely target cancer-associated
fibroblasts (CAFs)

CAFs significantly influence the TME. These fibroblasts
engage in a reciprocal interaction with tumor cells,
which is crucial for maintaining the tumor matrix [69].
Recent research has intriguingly implicated CAFs in pro-
moting drug resistance and impeding drug delivery [84].
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Consequently, CAF-orientedNPapproaches have emerged
to combat resistance.

5.3.1 Disruption of CAF-related barriers: a
potential pathway to subvert resistance

The first approach focuses on the targeted disruption of
key CAF components. For instance, myofibroblasts, a sig-
nificant fraction of CAFs, are formed through the action
of transforming growth factor-beta 1, which increases ROS
and α-SMA levels, effects that antioxidants can mitigate
[85]. Alili et al. have demonstrated that nanoceria NPs
can effectively modulate myofibroblast formation, reduce
α-SMA in these cells, and inhibit tumor cell invasion [86].

5.3.2 Targeting CAFs: amplifying the
efficacy of tumor treatment

The second strategy establishes barriers to hinder drug
absorption and penetration [69]. It has been shown
that Wnt16, a molecule upregulated in CAFs following
treatment with cisplatinum, promotes therapy resistance
[87]. Nevertheless, NPs carrying Wnt16-siRNAs have been
shown to enhance the cytotoxicity of cisplatinum in
stroma-rich environments [87].
Additionally, the modification of CAFs using NPs

forms another aspect of this strategy. Huang et al. engi-
neered nanomaterials that, upon administration to mouse
xenograft models, induced apoptosis in CAFs and trans-
formed them into a quiescent state. This led to an
effective remodeling of the TME, enhancing the effec-
tiveness of subsequent therapeutic interventions [88]. A
notable example of biomimetic NPs is the NExT plat-
form, which wraps NPs with membranes from exhausted
patient-derived T-cells and has demonstrated significant
potential in targeting CAFs. NExT NPs have enhanced
the efficacy of chemotherapy in the TME by targeting
both tumor PD-L1 and CAFs, leading to stromal remod-
eling and reduced therapy resistance. In a patient-derived
xenograft model of triple-negative breast cancer, NExT
facilitated chemotherapy penetration and improved tumor
suppression, offering a promising avenue for personalized
chemoimmunotherapy approaches [34].
In summary, NP-based drug delivery systems represent

an innovative and potentially transformative approach for
targeting CAFs, with the potential to reverse drug resis-
tance, enhance T cell infiltration, and reshape the TME
to reactivate anti-cancer pathways. This method promises
a new direction for personalized therapies and, when
combined with concurrent therapeutic strategies, may
significantly improve clinical outcomes.

5.4 Employing nanomedicine to
modulate tumor extracellular matrix
(ECM)

The ECM provides structural support and orchestrates cel-
lular activities, including proliferation, communication,
and adhesion [89]. Its characteristics vary based on the resi-
dent cells, the specific tumor tissue, and the disease staging
[90, 91].
Generally, the ECM contributes to tumor therapy resis-

tance by facilitating evasion of immune surveillance and
impeding drug delivery [92]. Typically, small molecu-
lar therapeutics are transported from interstitial spaces
to tumor cells, driven by blood pressure. However, the
ECM’s structural organization increases fluid pressure,
thereby obstructing drug penetration into interstitial
spaces [91]. Additionally, the high density of ECM com-
ponents in three-dimensional cultured spheroids signifi-
cantly hinders drug delivery compared to two-dimensional
monolayer cultures [93]. Notably, cancer cells within
collagen I matrices exhibit increased resistance to 5-
fluorouracil/oxaliplatin [93, 94]. Furthermore, proteogly-
cans in the ECM can enhance inflammatory cytokine pro-
duction, thus promoting immune evasion [95–97]. Thus,
the ECM plays a crucial role in tumorigenesis and offers
a target for innovative therapeutic strategies.
Recent research has focused on targeting the ECM.

One approach utilizes an ECM-degrading nanoagonist
with NIR-II light to control activation of the intracellu-
lar STING pathway for mild photothermal-augmented
chemodynamic-immunotherapy of breast cancer. This
mild photothermal activation combined with ICD
enhances anti-tumor immune responses and improves
effector T cell infiltration into tumor tissues following
ECM degradation [98]. Moreover, the dense ECM is a
major barrier to tumor infiltration by CTLs, contributing
to hepatocellular carcinoma immunotherapy resistance.
Hyaluronidase, IL-12, and anti-PD-L1 antibody were
co-delivered using a pH and matrix metalloproteinase
-2 dual-sensitive polymer/calcium phosphate hybrid
nanocarrier. The dissolution of calcium phosphate
facilitated ECM digestion, enhancing CTL infiltration
and proliferation, thus promoting anti-tumor effects.
This dual-sensitive nanodrug demonstrates an effective
approach to reverse immunotherapy resistance [99].
Moreover, NPs designed to deplete collagen have been

developed, given that excessive collagen can induce ther-
apy resistance and inhibit drug absorption [100]. TGF-β
receptor inhibitors (LY2157299) were delivered by using
an acidic tumor extracellular pH-responsive clustered
NP (LYiClustersiPD-L1). LY2157299 encapsulated in the
hydrophobic core of the NP can effectively reduce type I
collagen. ThisNP significantly increases tumor-infiltrating
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CD8+ T cells and provokes antitumor immunity, synergis-
tically suppressing tumor growth [101].

5.5 NP-based drug delivery systems for
targeting the tumor vasculature

The tumor vasculature is crucial for cancer recurrence,
metastasis, and resistance, providing nutrients, oxygen,
growth factors, and serving as a channel for waste disposal
[102]. Its unique features, such as intricate, branched mor-
phology, irregular blood flow, and leaky vessel walls, sub-
stantially impede drug delivery, fostering an environment
conducive to tumor growth and therapeutic resistance
[103]. Additionally, the scarcity or absence of lymph ves-
sels inmany solid tumors creates high interstitial pressure,
which severely limits the transport of large biomolecules
away from the tumor tissue [104, 105]. This pressure also
hinders the penetration of antibodies and large therapeutic
molecules. The aberrant tumor vasculature further com-
plicates the efficient delivery of nutrients and oxygen to
cancer cells, leading to metabolic waste accumulation and
creating a hypoxic and acidic environment that contributes
to drug resistance [106]. It has been shown that drug dis-
tribution is strongly associated with the distance from the
vasculature to the tumor tissues [107], significantly impact-
ing treatment outcomes in lung, breast, and liver cancers
[2].
This understanding has led to the development of NP-

based strategies specifically targeting these aberrant blood
vessels [67]. However, acquired endothelial resistance has
been a formidable obstacle to these approaches [67, 71].
Recent advancements suggest promising avenues in NP
drug delivery systems loaded with anti-angiogenic drugs
capable of circumventing the endothelial resistance [67].
For instance, Du et al. proposed a lipid-nanomaterial
strategy combining angiogenesis-inhibiting drugs, anti-
neoplastic drugs, and low-molecular-weight heparin to
normalize the tumor vasculature and enhance therapeutic
responses [108]. Additionally, gold NPs carrying recom-
binant endostatin to inhibit vascular endothelial growth
factor (VEGF) resulted in reduced hypoxia, normalized
vessels, enhanced endostatin accumulation, and improved
therapeutic outcomes in xenograft models [109]. A notable
innovative approach involves the use of NIR-laser-induced
NPs. This non-invasive strategy aims to rapidly and pre-
cisely destruct abnormal vasculature by generating high
local temperatures, leading to the formation of disruptive
bubbles and inducing tumor cell necrosis [110]. Further-
more, the efficiency of nano-based vasculature-disrupting
strategies has been shown to be amplified when combined
with immunotherapy. In one study, an NP system was
used to induce apoptotic death in tumors, simultaneously

promoting NP absorption and enhancing radiotoxicity
[111]. This approach demonstrated a considerable reduc-
tion in tumor volume and tumor vasculature activity.
Further efforts to combine anti-angiogenic drugs and
immunotherapy have included the development of antian-
giogenic copper chelating polymers to create NPs loaded
with resiquimod. This combined strategy effectively inhib-
ited tumor cell growth and metastasis in breast cancer
through the dual action of copper-deficiency-induced anti-
angiogenesis and resiquimod-elicited immune activation
[112]. Additionally, stable tumor vascular normalization
could be a significant strategy for long-term change to
remodel the TME and potentially reverse immunother-
apy resistance. V@LDL NPs is a nano-delivery system
sustainedly releasing Vandetanib to control the dose of
the drug to the normalizing level, and prove its stable
tumor vascular normalizing effect in four T1 breast cancer
models, successfully inhibiting tumor progression [113].

6 DESIGNS, PRECLINICAL PRACTICE
AND CLINICAL TRIALS

6.1 Designs and preclinical practice

Several specific nanomedicines have been developed to
enhance immunotherapy and address resistance (Table 2).
For example, a nanomedicine containing the p53 plasmid
has been shown to improve the efficacy of anti-PD1 anti-
body treatment in mouse models of glioblastoma, NSCLC,
and breast cancer [114]. Additionally, the NP AZD1080
has enhanced drug delivery to cancer sites, reduced PD1
expression, and activated CD8+ T cells [115]. Zero-valent-
iron NPs have also demonstrated anticancer immunity
and cancer-specific cytotoxicity in lung cancer models
[116]. Other innovations include nanomedicines designed
to improve immunotherapy in lung cancer [117], aug-
ment anti-PD1 therapy [118], and target the TME for
immunotherapy [119]. Notably, NBTXR3, a first-in-class
hafnium oxide radioenhancer NP, has been evaluated in
a Phase 2/3 trial for safety and efficacy as a preoperative
treatment in soft tissue sarcoma patients [120]. This NP has
also been used to combat anti-PD1 resistance in lung can-
cer [121]. Further advancements include nanodiamond-
doxorubicin conjugates (Nano-DOX), which enhance
tumor suppression synergistically when combined with
anti-PD-L1 agents [122, 123]. Another example is NExT
(NPs wrapped in membranes from exhausted patient-
derived T cells). These NPs improve tumor suppression in
a PDX model of TNBC by combining anti-PD-L1 effects
with chemotherapy. NExT exploits tumor immune eva-
sion mechanisms, enhancing chemotherapy penetration
and tumor control [34]. These developments highlight the
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potential of nanomedicines to create more effective thera-
peutic approaches in cancer treatment, addressing existing
challenges in immunotherapy.
Significant progress has also been achieved through the

work of Takashi Nakamura and his team [125]. They devel-
oped lipid NPs loaded with STING agonists (STING-LNPs)
to overcome anti-PD1 resistance in melanoma lung metas-
tases. This strategy primarily works by activating NK cells.
While anti-PD1monotherapy showedminimal effect, com-
bining STING-LNPs with anti-PD-1 produced a synergistic
antitumor response. Upon intravenous injection, STING-
LNPs were efficiently absorbed by liver macrophages,
stimulating IFN-1 production and leading to systemic NK
cell activation. This enhanced the expression of molecules
like CD3, CD4, NK1.1, PD-1, and IFN-γ within lung
metastases. Activated NK cells produced IFN-γ, increasing
PD-L1 expression in cancer cells. Consequently, combining
STING-LNPs with anti-PD1 resulted in a robust antitumor
effect [125]. This innovative approach using STING-LNPs
presents a promising candidate for combination therapy
against anti-PD1-resistant tumors. However, further stud-
ies are needed to assess liver toxicity and explore the use of
alternative signalingmolecules in this therapeutic strategy.

6.2 NPs for combating cancer
immunotherapy resistance in clinical trials

Nanoplatforms have demonstrated significant potential
in overcoming immunotherapy resistance. Their high
loading capacity, adjustable porosity, and targeted deliv-
ery capabilities enhance immunotherapy efficacy while
reducing adverse effects. Despite substantial progress in
preclinical studies, the clinical application of NPs remains
in its early stages. Over the past decade, several clinical
trials have been initiated to assess NP-based immunother-
apy, either as standalone treatments or in combination
with conventional immunotherapy, to address cancer and
resistance to treatment. A Phase 1 clinical trial is evalu-
ating immune-stimulating crystalline Hafnium oxide NPs
with radio-enhancing properties in combinationwith anti-
PD1 therapy for patients with primary cancer and lung
or liver metastases [126]. Another Phase 1 trial employed
nanoliposomes to deliver themicroRNA-34amimic,which
suppresses immunosuppressive tumor genes in patients
with solid tumors. Preliminary findings from this study
were encouraging but require further verification [127].
Further, a lipid-coated mRNA-4157 encoding multiple
tumor antigens was tested in a Phase 1 trial, both inde-
pendently and with the humanized anti-PD1 antibody
pembrolizumab. Early results indicated good dose toler-
ance, and subsequent Phase 2 trials may provide deeper
insights into the resistance suppression [128]. Another
Phase 1 trial explored the anticancer potential of an RNA-

lipoplex designed to induce DC maturation and activate
T-cell responses in patients with advancedmelanoma. The
trial showed robust T-cell responses in all participants, sig-
naling potential for combating immunotherapy resistance,
though further clinical validation is necessary [129].
These trials underscore the promising role of NPs in

overcoming cancer immunotherapy resistance. This inno-
vative approach could revolutionize cancer treatment and
resistance management. Table 3 summarizes key clinical
trials focused on nano-medicine in this area.
The successful transformation of nanomedicines from

preclinical development to clinical trials marks a criti-
cal step in addressing cancer immunotherapy resistance.
To achieve this, several key factors must be carefully
considered. Firstly, rigorous, evidence-based research is
essential. Preclinical studies must not only confirm the
safety and efficacy of nanomedicines but also provide a
detailed understanding of their mechanisms of action.
These insights are crucial for designing effective clinical
trial protocols.
Furthermore, well-designed clinical trials are pivotal.

Attention should be given to patient selection crite-
ria, dosing regimens, and endpoints. The unique prop-
erties of nanomedicines, such as high drug-loading
capacity and precise targeting capabilities, should be
leveraged to improve therapeutic outcomes. Combining
nanomedicines with established immunotherapies, such
as anti-PD1 antibodies, is another promising approach to
overcoming immunotherapy resistance.
Safety assessment is critical. Comprehensive evalua-

tion of potential adverse effects, including liver toxicity,
immune-related events, and off-target effects, must be
conducted during clinical trials. Early identification and
mitigation of these safety concerns are essential to ensure
patient safety and secure regulatory approval.
Collaboration among researchers, clinicians, and phar-

maceutical companies is vital for success. Such part-
nerships can streamline processes, from optimizing NP
formulations to conducting large-scale, multicenter trials.
Ultimately, transparency and robust data collection are

indispensable. Reporting both positive and negative find-
ings, along with long-term follow-up data, contributes to
the collective knowledge base and guides future research.
By addressing these considerations, the successful integra-
tion of nanomedicines into clinical trials has the potential
to revolutionize cancer immunotherapy, effectively com-
bat resistance, and improve patient outcomes.

7 CONCLUSION AND PERSPECTIVE

The introduction of cancer immunotherapy has marked a
significant shift in oncology, introducing a potent approach
that utilizes the body’s natural defense mechanisms to

 25233548, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cac2.70025 by Z

hixiang L
in , W

iley O
nline L

ibrary on [13/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



18 KONG et al.

T
A
B
L
E

3
Th
e
im
po
rt
an
tc
lin
ic
al
tr
ia
ls
ab
ou
tn
an
om

ed
ic
in
e
on

co
m
ba
tin
g
ca
nc
er
im
m
un
ot
he
ra
py

re
si
st
an
ce
.

St
ud

y
N
C
T
nu

m
be
r

Ti
tl
e

Ty
pe

of
N
P

St
at
us

In
di
ca
ti
on
(s
)

In
te
rv
en
ti
on
s

O
ut
co
m
e
m
ea
su
re
s

Ph
as
e

N
um

be
r
of

en
ro
llm

en
ts

C
ou
nt
ry

of
st
ud

y

1
N
CT

03
00
35
46

N
ab
-p
ac
lit
ax
el
/

Ri
tu
xi
m
ab
-c
oa
te
d
N
P

A
R1
60

in
tr
ea
tin
g
pa
tie
nt
s

w
ith

re
la
ps
ed

or
re
fr
ac
to
ry

B-
C
el
ln
on
-h
od
gk
in

ly
m
ph
om

a,
LS
16
81
tr
ia
l

N
ot

m
en
tio
ne
d

Su
sp
en
de
d

Va
rio
us
ty
pe
so
f

no
n-
ho
dg
ki
n

ly
m
ph
om

a

D
ru
g:

N
ab
-p
ac
lit
ax
el
/

Ri
tu
xi
m
ab
-c
oa
te
d

N
P
A
R1
60

Tu
m
or
re
sp
on
se
,

pr
og
re
ss
io
n-
fr
ee
su
rv
iv
al
,

ov
er
al
ls
ur
vi
va
l

1
18

U
ni
te
d
St
at
es

2
N
CT

04
75
17
86

D
os
e
es
ca
la
tio
n
st
ud
y
of

im
m
un
om

od
ul
at
or
y
N
Ps

(P
RE

C
IO
U
S-
01
)

PL
G
A
N
P

Re
cr
ui
tin
g

A
dv
an
ce
d
so
lid

tu
m
or

D
ru
g:

PR
EC

IO
U
S-
01

Sa
fe
ty
of
PR

EC
IO
U
S-
01
,

m
ul
tip
le
x

im
m
un
oh
is
to
ch
em

is
tr
y
as
sa
y,

re
co
m
m
en
de
d
ph
as
e
2
do
se

1
15

N
et
he
rla
nd
s

3
N
CT

05
26
49
74

N
ov
el
RN

A
-N
P
va
cc
in
e

fo
rt
he

tr
ea
tm
en
to
fe
ar
ly

m
el
an
om

a
re
cu
rr
en
ce

fo
llo
w
in
g
ad
ju
va
nt

an
ti-
PD

-1
an
tib
od
y

th
er
ap
y

Li
po
so
m
e

N
ot
ye
t

re
cr
ui
tin
g

M
el
an
om

a
Bi
ol
og
ic
al
:

au
to
lo
go
us
to
ta
l

tu
m
or
m
RN

A
lo
ad
ed

D
O
TA

P
lip
os
om

e
va
cc
in
e

O
ve
ra
ll
re
sp
on
se
ra
te
,

pr
og
re
ss
io
n-
fr
ee
su
rv
iv
al

1
18

U
ni
te
d
St
at
es

4
N
CT

05
28
03
79

Tr
ai
ne
d
im
m
un
ity

in
th
yr
oi
d
ca
rc
in
om

a
an
d

co
lo
n
ca
rc
in
om

a

Li
po
pr
ot
ei
n

N
P

Re
cr
ui
tin
g

Th
yr
oi
d
ca
nc
er
,

co
lo
n
ca
rc
in
om

a
N
o
in
te
rv
en
tio
n

w
ill
ta
ke

pl
ac
e

Le
ve
ls
of
pr
o-
in
fla
m
m
at
or
y

cy
to
ki
ne
sa
nd

ch
em

ok
in
es

N
A

60
N
et
he
rla
nd
s

5
N
CT

03
32
33
98

D
os
e
es
ca
la
tio
n
an
d

ef
fic
ac
y
st
ud
y
of

m
RN

A
-2
41
6
fo
r

in
tr
at
um

or
al
in
je
ct
io
n

al
on
e
an
d
in
co
m
bi
na
tio
n

w
ith

D
ur
va
lu
m
ab

fo
r

pa
rt
ic
ip
an
ts
w
ith

ad
va
nc
ed

m
al
ig
na
nc
ie
s

Li
pi
d
N
P

Te
rm

in
at
ed

Va
rio
us
ty
pe
so
f

m
al
ig
na
nc
ie
s

Bi
ol
og
ic
al
:

m
RN

A
-2
41
6

bi
ol
og
ic
al
:

D
ur
va
lu
m
ab

D
os
e
lim

iti
ng

to
xi
ci
tie
s,
ad
ve
rs
e

ev
en
ts
,o
bj
ec
tiv
e
re
sp
on
se
ra
te

1/
2

79
U
ni
te
d
St
at
es

6
N
CT

03
73
99
31

D
os
e
es
ca
la
tio
n
st
ud
y
of

m
RN

A
-2
75
2
fo
r

in
tr
at
um

or
al
in
je
ct
io
n
to

pa
rt
ic
ip
an
ts
in
ad
va
nc
ed

m
al
ig
na
nc
ie
s

Li
pi
d
N
P

Re
cr
ui
tin
g

Va
rio
us
ty
pe
so
f

m
al
ig
na
nc
ie
s

Bi
ol
og
ic
al
:

m
RN

A
-2
75
2

bi
ol
og
ic
al
:

D
ur
va
lu
m
ab

D
os
e
lim

iti
ng

to
xi
ci
tie
s,
ad
ve
rs
e

ev
en
ts
,o
ve
ra
ll
re
sp
on
se
ra
te

1
26
4

U
ni
te
d
St
at
es

7
N
CT

03
12
08
32

Ph
as
e
1t
ria
lo
fP
A
N
-3
01
-1

(S
N
S-
30
1)
in
ca
nc
er

pa
tie
nt
s

Bi
om

im
et
ic

N
P

C
om

pl
et
ed

Pr
os
ta
te
ca
nc
er

Bi
ol
og
ic
al
:

PA
N
-3
01
-1

Sa
fe
ty
as
se
ss
ed

by
de
ve
lo
pm

en
t

of
ad
ve
rs
e
ev
en
ts
an
d

do
se
-li
m
iti
ng

to
xi
ci
ty

1
12

U
ni
te
d
St
at
es

(C
on
tin
ue
s)

 25233548, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cac2.70025 by Z

hixiang L
in , W

iley O
nline L

ibrary on [13/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



KONG et al. 19

T
A
B
L
E

3
(C
on
tin
ue
d)

St
ud

y
N
C
T
nu

m
be
r

Ti
tl
e

Ty
pe

of
N
P

St
at
us

In
di
ca
ti
on
(s
)

In
te
rv
en
ti
on
s

O
ut
co
m
e
m
ea
su
re
s

Ph
as
e

N
um

be
r
of

en
ro
llm

en
ts

C
ou
nt
ry

of
st
ud

y

8
N
CT

02
74
09
85

A
ph
as
e
1c
lin
ic
al
st
ud
y
of

A
ZD

46
35
in
pa
tie
nt
sw

ith
ad
va
nc
ed

so
lid

m
al
ig
na
nc
ie
s

N
ot

m
en
tio
ne
d

A
ct
iv
e,
no
t

re
cr
ui
tin
g

Va
rio
us
ty
pe
so
f

m
al
ig
na
nc
ie
s

D
ru
g:
A
ZD

46
35
,

D
ur
va
lu
m
ab
,

A
bi
ra
te
ro
ne

A
ce
ta
te
,

En
za
lu
ta
m
id
e,

O
le
cl
um

ab
,

D
oc
et
ax
el

D
os
e-
lim

iti
ng

to
xi
ci
tie
s,
ad
ve
rs
e

ev
en
ts

1
31
3

U
ni
te
d
St
at
es

9
N
CT

03
71
93
26

A
st
ud
y
to

ev
al
ua
te
/t
ol
er
ab
ili
ty
of

im
m
un
e-
th
er
ap
y

co
m
bi
na
tio
ns
in

pa
rt
ic
ip
at
io
n
w
ith

TN
BC

or
gy
na
ec
ol
og
ic

m
al
ig
na
nc
ie
s

Li
po
so
m
e/

A
lb
um

in
-

bo
un
d

N
P

C
om

pl
et
ed

TN
BC

an
d
ov
ar
ia
n

ca
nc
er

D
ru
g:

Et
ru
m
ad
en
an
t,

IP
I-
54
9,
pe
gy
la
te
d

lip
os
om

al
do
xo
ru
bi
ci
n,
N
P

al
bu
m
in
-b
ou
nd

pa
cl
ita
xe
l

D
os
e-
lim

iti
ng

to
xi
ci
tie
s,
ad
ve
rs
e

ev
en
ts

1
35

U
ni
te
d
St
at
es

10
N
C
T0
51
57
54
2

N
eo
ad
ju
va
nt
LD

RT
co
m
bi
ne
d
w
ith

D
ur
va
lu
m
ab

in
po
te
nt
ia
lly

re
se
ct
ab
le

st
ag
e
II
IN

SC
LC

A
lb
um

in
-

bo
un
d

N
P

Re
cr
ui
tin
g

St
ag
e
II
IN

SC
LC

D
ru
g:

D
ur
va
lu
m
ab
,N

P
al
bu
m
in
bo
un
d

pa
cl
ita
xe
l

Ra
di
at
io
n:
lo
w

do
se
ra
di
at
io
n

th
er
ap
y

A
dv
er
se
ev
en
ts
,o
bj
ec
tiv
e

re
sp
on
se
ra
te
,e
ve
nt
-fr
ee

su
rv
iv
al
,m

aj
or
pa
th
ol
og
ic
al

re
sp
on
se
ra
te
,p
at
ho
lo
gi
ca
l

co
m
pl
et
e
re
sp
on
se
ra
te

1
9

P.
R.
C
hi
na

11
N
CT

05
10
16
16

A
pi
lo
ts
tu
dy

of
ne
oa
dj
uv
an
t

ch
em

ot
he
ra
py

w
ith

or
w
ith
ou
tC

am
re
liz
um

ab
fo
rl
oc
al
ly
ad
va
nc
ed

ga
st
ric

ca
nc
er

A
lb
um

in
-

bo
un
d

N
P

Re
cr
ui
tin
g

G
as
tr
ic
ca
nc
er

D
ru
g:

C
am

re
liz
um

ab
+

ch
em

ot
he
ra
py
,

ch
em

ot
he
ra
py

M
aj
or
pa
th
ol
og
ic
re
sp
on
se
ra
te
,

co
m
pl
et
e
pa
th
ol
og
ic
re
sp
on
se

ra
te
,R
0
re
se
ct
io
n
ra
te
,o
ve
ra
ll

su
rv
iv
al
,d
is
ea
se
-fr
ee
su
rv
iv
al
,

pe
rio
pe
ra
tiv
e
co
m
pl
ic
at
io
ns

1/
2

10
0

P.
R.
C
hi
na

12
N
C
T0
48
62
45
5

N
BT
XR

3,
ra
di
at
io
n

th
er
ap
y,
an
d

Pe
m
br
ol
iz
um

ab
fo
rt
he

tr
ea
tm
en
to
fr
ec
ur
re
nt
or

m
et
as
ta
tic

he
ad

an
d
ne
ck

sq
ua
m
ou
sc
el
lc
an
ce
r

H
af
ni
um

ox
id
e-

co
nt
ai
ni
ng

N
P

Re
cr
ui
tin
g

M
et
as
ta
tic

he
ad

an
d

ne
ck

sq
ua
m
ou
sc
el
l

ca
rc
in
om

a
an
d

re
cu
rr
en
th
ea
d
an
d

ne
ck

sq
ua
m
ou
sc
el
l

ca
rc
in
om

a

O
th
er
:H

af
ni
um

ox
id
e-
co
nt
ai
ni
ng

N
Ps
N
BT
XR

3
Ra
di
at
io
n:

hy
po
fr
ac
tio
na
te
d

ra
di
at
io
n
th
er
ap
y

Bi
ol
og
ic
al
:

Pe
m
br
ol
iz
um

ab
Ra
di
at
io
n:

st
er
eo
ta
ct
ic
bo
dy

ra
di
at
io
n
th
er
ap
y

Pr
og
re
ss
io
n
fr
ee
su
rv
iv
al
,l
oc
al

fa
ilu
re
,r
eg
io
na
lf
ai
lu
re
,d
is
ta
nt

fa
ilu
re
,o
bj
ec
tiv
e
re
sp
on
se
ra
te

2
60

U
ni
te
d
St
at
es

(C
on
tin
ue
s)

 25233548, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cac2.70025 by Z

hixiang L
in , W

iley O
nline L

ibrary on [13/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



20 KONG et al.

T
A
B
L
E

3
(C
on
tin
ue
d)

St
ud

y
N
C
T
nu

m
be
r

Ti
tl
e

Ty
pe

of
N
P

St
at
us

In
di
ca
ti
on
(s
)

In
te
rv
en
ti
on
s

O
ut
co
m
e
m
ea
su
re
s

Ph
as
e

N
um

be
r
of

en
ro
llm

en
ts

C
ou
nt
ry

of
st
ud

y

13
N
C
T0
49
40
28
6

G
em

ci
ta
bi
ne
,

N
ab
-p
ac
lit
ax
el
,

D
ur
va
lu
m
ab
,a
nd

O
le
cl
um

ab
be
fo
re
su
rg
er
y

fo
rt
he

tr
ea
tm
en
to
fi
n

re
se
ct
ab
le
/b
or
de
rli
ne

re
se
ct
ab
le
pr
im
ar
y

pa
nc
re
at
ic
ca
nc
er

A
lb
um

in
-

bo
un
d

N
P

Re
cr
ui
tin
g

Bo
rd
er
lin
e
re
se
ct
ab
le

pa
nc
re
at
ic

ad
en
o-
ca
rc
in
om

a,
re
se
ct
ab
le
pa
nc
re
at
ic

ad
en
o-
ca
rc
in
om

a
pa
nc
re
at
ic
ca
nc
er

Bi
ol
og
ic
al
:

D
ur
va
lu
m
ab
,

O
le
cl
um

ab
D
ru
g:

G
em

ci
ta
bi
ne
,

N
ab
-p
ac
lit
ax
el

M
aj
or
pa
th
ol
og
ic
al
re
sp
on
se

ra
te
,a
dv
er
se
ev
en
ts

2
30

U
ni
te
d
St
at
es

14
N
CT

05
09
23
73

C
om

bi
na
tio
n
w
ith

ch
em

ot
he
ra
py

fo
rt
he

tr
ea
tm
en
to
fa
dv
an
ce
d

so
lid

tu
m
ou
rs
in
vo
lv
in
g

th
e
ab
do
m
en

or
th
or
ax

A
lb
um

in
-

bo
un
d

N
P

Re
cr
ui
tin
g

A
dv
an
ce
d
br
ea
st

ca
rc
in
om

a,
ad
va
nc
ed

en
do
m
et
ria
l

ca
rc
in
om

a,
ad
va
nc
ed

fa
llo
pi
an

tu
be

ca
rc
in
om

a,
ad
va
nc
ed

he
pa
to
ce
llu
la
r

ca
rc
in
om

a,
ad
va
nc
ed

m
al
ig
na
nt
ab
do
m
in
al

ne
op
la
sm

,a
dv
an
ce
d

m
al
ig
na
nt
fe
m
al
e

re
pr
od
uc
tiv
e
sy
st
em

ne
op
la
sm

,a
dv
an
ce
d

m
al
ig
na
nt
th
or
ac
ic

ne
op
la
sm

,a
dv
an
ce
d

ov
ar
ia
n
ca
rc
in
om

a,
ad
va
nc
ed

pr
im
ar
y

pe
rit
on
ea
lc
ar
ci
no
m
a,

ad
va
nc
ed

re
na
lc
el
l

ca
rc
in
om

a

Bi
ol
og
ic
al
:

A
te
zo
liz
um

ab
D
ru
g:

C
ab
oz
an
tin
ib

S-
m
al
at
e,

N
ab
-p
ac
lit
ax
el

Pr
oc
ed
ur
e:
tu
m
or

tr
ea
tin
g
fie
ld
s

th
er
ap
y

Sa
fe
ty
an
d
to
le
ra
bi
lit
y
of
tu
m
or

tr
ea
tin
g
fie
ld
s

1
36

U
ni
te
d
St
at
es

15
N
CT

03
90
74
75

D
ur
va
lu
m
ab

in
co
m
bi
na
tio
n
w
ith

ch
em

ot
he
ra
py

in
tr
ea
tin
g

pa
tie
nt
sw

ith
ad
va
nc
ed

so
lid

tu
m
ou
rs

Li
po
so
m
e/

A
lb
um

in
-

bo
un
d

N
P

Re
cr
ui
tin
g

Lo
ca
lly

ad
va
nc
ed

m
al
ig
na
nt
so
lid

ne
op
la
sm

,m
et
as
ta
tic

m
al
ig
na
nt
so
lid

ne
op
la
sm

,
un
re
se
ct
ab
le

m
al
ig
na
nt
so
lid

ne
op
la
sm

D
ru
g:

C
ap
ec
ita
bi
ne
,

C
ar
bo
pl
at
in
,

G
em

ci
ta
bi
ne

H
yd
ro
ch
lo
rid
e,

N
ab
-p
ac
lit
ax
el
,

Pa
cl
ita
xe
l,

pe
gy
la
te
d

lip
os
om

al
D
O
Xo
ru
bi
ci
n

hy
dr
oc
hl
or
id
e

Bi
ol
og
ic
al
:

D
ur
va
lu
m
ab

A
dv
er
se
ev
en
ts

2
11
5

U
ni
te
d
St
at
es

(C
on
tin
ue
s)

 25233548, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cac2.70025 by Z

hixiang L
in , W

iley O
nline L

ibrary on [13/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



KONG et al. 21

T
A
B
L
E

3
(C
on
tin
ue
d)

St
ud

y
N
C
T
nu

m
be
r

Ti
tl
e

Ty
pe

of
N
P

St
at
us

In
di
ca
ti
on
(s
)

In
te
rv
en
ti
on
s

O
ut
co
m
e
m
ea
su
re
s

Ph
as
e

N
um

be
r
of

en
ro
llm

en
ts

C
ou
nt
ry

of
st
ud

y

16
N
CT

05
42
27
94

Te
st
in
g
th
e
ad
di
tio
n
of

an
tic
an
ce
rd
ru
g,

ZE
N
00
36
94

(Z
EN

-3
69
4)

an
d
PD

-1
in
hi
bi
to
r

(P
em

br
ol
iz
um

ab
)t
o

st
an
da
rd
ch
em

o-
th
er
ap
y

(N
ab
-P
ac
lit
ax
el
)

tr
ea
tm
en
ti
n
pa
tie
nt
sw

ith
ad
va
nc
ed

TN
BC

A
lb
um

in
-

bo
un
d

N
P

Re
cr
ui
tin
g

A
na
to
m
ic
st
ag
e
II
I/
IV

br
ea
st
ca
nc
er
lo
ca
lly

ad
va
nc
ed

TN
BC

,
m
et
as
ta
tic

TN
BC

,
un
re
se
ct
ab
le
TN

BC

D
ru
g:
BE

T
Br
om

od
om

ai
n

In
hi
bi
to
r

ZE
N
-3
69
4,

N
ab
-p
ac
lit
ax
el

Pr
oc
ed
ur
e:
bi
op
sy
,

bi
os
pe
ci
m
en

co
lle
ct
io
n,

co
m
pu
te
d

to
m
og
ra
ph
y,

m
ag
ne
tic

re
so
na
nc
e

im
ag
in
g

Bi
ol
og
ic
al
:

Pe
m
br
ol
iz
um

ab

M
ax
im
um

to
le
ra
te
d
do
se
,

re
co
m
m
en
de
d
ph
as
e
2
do
se
,

ad
ve
rs
e
ev
en
ts

1
57

U
ni
te
d
St
at
es

17
N
CT

04
96
49
60

Pe
m
br
o
+
C
he
m
o
in
br
ai
n

m
et
as
ta
si
s

A
lb
um

in
-

bo
un
d

N
P

Re
cr
ui
tin
g

Lu
ng

ca
nc
er
,b
ra
in

ca
nc
er

D
ru
g:

Pe
m
br
ol
iz
um

ab
,

N
ab

pa
cl
i-

ta
xe
l,
Pa
cl
ita
xe
l,

Pe
m
et
re
xe
d,

C
ar
bo
pl
at
in

D
is
ea
se
co
nt
ro
lr
at
e

2
45

U
ni
te
d
St
at
es

18
N
C
T0
31
81
10
0

A
te
zo
liz
um

ab
w
ith

ch
em

ot
he
ra
py

in
tr
ea
tin
g

pa
tie
nt
sw

ith
an
ap
la
st
ic
or

po
or
ly
di
ffe
re
nt
ia
te
d

th
yr
oi
d
ca
nc
er

A
lb
um

in
-

bo
un
d

N
P

A
ct
iv
e,
no
t

re
cr
ui
tin
g

M
et
as
ta
tic

th
yr
oi
d

gl
an
d
ca
rc
in
om

a,
po
or
ly
di
ffe
re
nt
ia
te
d

th
yr
oi
d
gl
an
d

ca
rc
in
om

a,
st
ag
e

IV
A
/I
V
B/
IV
C
th
yr
oi
d

gl
an
d
an
ap
la
st
ic

ca
rc
in
om

a,
gl
an
d

an
ap
la
st
ic
ca
rc
in
om

a,
un
re
se
ct
ab
le
th
yr
oi
d

gl
an
d
ca
rc
in
om

a

D
ru
g:

A
te
zo
liz
um

ab
,

C
ob
im
et
in
ib
,

N
ab
-p
ac
lit
ax
el
,

Pa
cl
ita
xe
l,

Ve
m
ur
af
en
ib

Bi
ol
og
ic
al
:

Be
va
ci
zu
m
ab

O
ve
ra
ll
su
rv
iv
al

2
50

U
ni
te
d
St
at
es

(C
on
tin
ue
s)

 25233548, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cac2.70025 by Z

hixiang L
in , W

iley O
nline L

ibrary on [13/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



22 KONG et al.

T
A
B
L
E

3
(C
on
tin
ue
d)

St
ud

y
N
C
T
nu

m
be
r

Ti
tl
e

Ty
pe

of
N
P

St
at
us

In
di
ca
ti
on
(s
)

In
te
rv
en
ti
on
s

O
ut
co
m
e
m
ea
su
re
s

Ph
as
e

N
um

be
r
of

en
ro
llm

en
ts

C
ou
nt
ry

of
st
ud

y

19
N
C
T0
48
92
95
3

Lo
ca
lc
on
so
lid
at
iv
e

th
er
ap
y
an
d
D
ur
va
lu
m
ab

fo
ro
lig
op
ro
gr
es
si
ve
an
d

po
ly
pr
og
re
ss
iv
e
st
ag
e
II
I

N
SC
LC

af
te
r

ch
em

or
ad
ia
tio
n
an
d

an
ti-
PD

-L
1t
he
ra
py

A
lb
um

in
-

bo
un
d

N
P

Re
cr
ui
tin
g

St
ag
e
II
I/
II
IA
/I
II
B

lu
ng

ca
nc
er
,s
ta
ge

II
I/
II
IA
/I
II
B

no
n-
sm

al
lc
el
ll
un
g

ca
nc
er

D
ru
g:

C
ar
bo
pl
at
in
,

G
em

ci
ta
bi
ne
,

N
ab
-p
ac
lit
ax
el
,

Pa
cl
ita
xe
l,

Pe
m
et
re
xe
d

Bi
ol
og
ic
al
:

D
ur
va
lu
m
ab

Pr
oc
ed
ur
e:
lo
ca
l

co
ns
ol
id
at
io
n

th
er
ap
y

O
th
er
:q
ua
lit
y

of
-li
fe
as
se
ss
m
en
t,

qu
es
tio
nn
ai
re

ad
m
in
is
tr
at
io
n

Pr
og
re
ss
io
n
fr
ee
su
rv
iv
al

2
51

U
ni
te
d
St
at
es

20
N
CT

05
03
96
32

Ph
as
e
I/
II
ra
nd
om

iz
ed

st
ud
y
of
N
BT
XR

3,
ra
di
at
io
n
th
er
ap
y,

Ip
ili
m
um

ab
,a
nd

N
iv
ol
um

ab
fo
rt
he

tr
ea
tm
en
to
fl
un
g
an
d/
or

liv
er
m
et
as
ta
se
sf
ro
m

so
lid

m
al
ig
na
nc
y

H
af
ni
um

ox
id
e-

co
nt
ai
ni
ng

N
P

Re
cr
ui
tin
g

A
dv
an
ce
d
m
al
ig
na
nt

so
lid

ne
op
la
sm

,m
et
a-

st
at
ic
m
al
ig
na
nt
ne
o-

pl
as
m
in
th
e
liv
er
,

m
et
as
ta
tic

m
al
ig
na
nt

ne
op
la
sm

in
th
e
lu
ng
,

m
et
as
ta
tic

m
al
ig
na
nt

so
lid

ne
op
la
sm

O
th
er
:H

af
ni
um

O
xi
de
-c
on
ta
in
in
g

N
Ps
N
BT
XR

3
Ra
di
at
io
n:

ra
di
at
io
n
th
er
ap
y

D
os
e
lim

iti
ng

to
xi
ci
tie
s,

ob
je
ct
iv
e
re
sp
on
se
ra
te

1/
2

40
U
ni
te
d
St
at
es

21
N
CT

05
45
10
43

D
ur
va
lu
m
ab

an
d

Tr
em

el
im
um

ab
in

co
m
bi
na
tio
n
w
ith

pr
op
ra
no
lo
la
nd

ch
em

ot
he
ra
py

fo
r

tr
ea
tm
en
to
fa
dv
an
ce
d

he
pa
to
pa
nc
re
ab
ili
ar
y

tu
m
or
s

A
lb
um

in
-

bo
un
d

N
P

N
ot
ye
t

re
cr
ui
tin
g

Pa
nc
re
at
ic
ca
nc
er
,

he
pa
to
ce
llu
la
rc
an
ce
r,

bi
lia
ry
tr
ac
tc
an
ce
r,

ch
ol
an
gi
oc
ar
ci
no
m
a

Bi
ol
og
ic
al
:

D
ur
va
lu
m
ab
,

Tr
em

el
im
um

ab
D
ru
g:

G
em

ci
ta
bi
ne
,N

ab
pa
cl
ita
xe
l,

Pr
op
ra
no
lo
l,

C
is
pl
at
in

Ef
fic
ac
y
of
pr
op
ra
no
lo
li
n

bo
os
tin
g
th
e
ef
fe
ct
so
f

im
m
un
ot
he
ra
py

2
62

C
an
ad
a

(C
on
tin
ue
s)

 25233548, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cac2.70025 by Z

hixiang L
in , W

iley O
nline L

ibrary on [13/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



KONG et al. 23

T
A
B
L
E

3
(C
on
tin
ue
d)

St
ud

y
N
C
T
nu

m
be
r

Ti
tl
e

Ty
pe

of
N
P

St
at
us

In
di
ca
ti
on
(s
)

In
te
rv
en
ti
on
s

O
ut
co
m
e
m
ea
su
re
s

Ph
as
e

N
um

be
r
of

en
ro
llm

en
ts

C
ou
nt
ry

of
st
ud

y

22
N
CT

05
50
16
65

Sp
lit
co
ur
se
ad
ap
tiv
e

ra
di
at
io
n
th
er
ap
y
w
ith

Pe
m
br
ol
iz
um

ab
w
ith
/w
ith
ou
t

ch
em

ot
he
ra
py

fo
rt
re
at
in
g

st
ag
e
IV

lu
ng

ca
nc
er

(O
ng
oi
ng
)

A
lb
um

in
-

bo
un
d

N
P

Re
cr
ui
tin
g

N
on
-s
m
al
lc
el
ll
un
g

ca
rc
in
om

a,
st
ag
e
IV

lu
ng

ca
nc
er

Pr
oc
ed
ur
e:

bi
os
pe
ci
m
en

co
lle
ct
io
n,

co
m
pu
te
d

to
m
og
ra
ph
y,

po
si
tr
on

em
is
si
on

D
ru
g:

C
ar
bo
pl
at
in
,

N
ab
-p
ac
lit
ax
el
,

Pe
m
et
re
xe
d

Bi
ol
og
ic
al
:

Pe
m
br
ol
iz
um

ab
Ra
di
at
io
n:

ra
di
at
io
n
th
er
ap
y

A
dv
er
se
ev
en
ts
,o
ve
ra
ll

re
sp
on
se
ra
te

1/
2

25
U
ni
te
d
St
at
es

No
te
:A

ll
cl
in
ic
al
tr
ia
ld
at
a
in
th
is
ta
bl
e
w
er
e
re
tr
ie
ve
d
fr
om

Th
e
M
y
C
an
ce
rG

en
om

e
cl
in
ic
al
tr
ia
ld
at
ab
as
e
(h
ttp
s:/
/w
w
w
.m
yc
an
ce
rg
en
om

e.
or
g/
co
nt
en
t/
cl
in
ic
al
_t
ria
ls
/)
.T
hi
sp
ub
lic
ly
av
ai
la
bl
e
da
ta
ba
se
pr
ov
id
es
co
m
pr
eh
en
si
ve
in
fo
r-

m
at
io
n
on

on
go
in
g
an
d
co
m
pl
et
ed

cl
in
ic
al
tr
ia
ls
re
la
te
d
to
ca
nc
er
tr
ea
tm
en
ts
,i
nc
lu
di
ng

tr
ia
ls
in
vo
lv
in
g
na
no
m
ed
ic
in
es
an
d
im
m
un
ot
he
ra
pi
es
.A

bb
re
vi
at
io
ns
:A

JC
C
:A

m
er
ic
an

jo
in
tc
om

m
itt
ee
on

ca
nc
er
;L
D
RT

:L
ow

do
se
ra
di
at
io
n

th
er
ap
y;
N
A
:N

ot
av
ai
la
bl
e
da
ta
;N

BT
XR

3:
H
af
ni
um

O
xi
de

na
no
pa
rt
ic
le
s;
N
Ps
:N

an
op
ar
tic
le
s;
N
SC
LC

:N
on
-s
m
al
lc
el
ll
un
g
ca
nc
er
;P
D
-L
1,
Pr
og
ra
m
m
ed

de
at
h-
lig
an
d
1P
LG

A
:P
ol
y
la
ct
ic
-c
o-
gl
yc
ol
ic
ac
id
;T
N
BC

:T
rip
le
ne
ga
tiv
e
br
ea
st

ca
nc
er
.

fight cancer. This review thoroughly explores the prin-
ciples of cancer immunotherapy, the complex resistance
mechanisms, strategies to circumvent these challenges,
and the potential role ofNPs in enhancing immunotherapy
effectiveness.
Despite its transformative effects, cancer immunother-

apy faces substantial challenges, notably the develop-
ment of resistance. Understanding the intricate dynamics
between various resistance factors is crucial to improving
the effectiveness of these therapies.
Through my extensive work with nanotechnology and

cancer immunotherapy, I have identified that NPs offer
promising solutions for overcoming immunotherapy resis-
tance. Their unique characteristics enable the manipula-
tion of the TME, improve drug solubility and delivery,
and adjust the overall condition of the patient. Specifi-
cally, incorporating NPs in drug delivery systems shows
potential in improving tumor oxygenation, targeting cell
death pathways, and altering the behavior and capabilities
of tumor-associated macrophages.
However, several limitations merit careful consider-

ation. The heterogeneity of tumors and variability in
enhanced permeability and retention (EPR) effects across
different patients introduce uncertainty regarding the
enrichment capabilities of NPs, which can impact thera-
peutic efficacy. Interactions between NPs and biological
components—such as proteins, cells, and tissues—can
influence their behavior and safety, raising concerns
about potential autoimmune side effects resulting from
enhanced immune responses. Furthermore, discrepancies
between preclinical and clinical outcomes, stemming from
differences between animal models and human tumors,
pose significant challenges for the clinical translation of
NP-based strategies.
The complexity of the safety profiles of nano-

immunotherapy, coupled with challenges in scalability,
cost-effectiveness, and regulatory compliance in manu-
facturing and commercializing these treatments, presents
significant challenges.
These issues highlight the need for continuous research,

refinement, and collaboration to overcome the hurdles
associated with nanomedicine in cancer immunotherapy.
It is critical to pursue robust, evidence-driven research and
detailed clinical trials, along with careful design of NP
systems, to effectively tackle these challenges.
In conclusion, as our understanding of the intricate

relationships among cancer, the immune system, and
nanotechnology expands, further advancements in can-
cer treatment are expected. The synergy of these elements
offers promising prospects for enhancing patient outcomes
and broadening our understanding of the body’s capacity
to combat disease. Continued exploration in these areas is
likely to lead to more personalized and effective treatment
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strategies for cancer patients, ultimately enhancing their
prognosis and quality of life.
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