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Adoptive cell therapy (ACT) represents a major pillar
of modern immuno-oncology. Naturally or synthetically
endowed with the ability to recognize tumor-associated
antigens, tumor-infiltrating lymphocytes (TILs) or T cells
engineered to transgenically express T cell receptors or
chimeric antigen receptors (CARs) are expanded and
infused to tumor patients to lyse tumor cells. Yet, despite
tremendous response rates against liquid tumors, many
patients undergo relapses, and treatment outcomes in solid
tumors have been disappointing so far [1]. The harsh tumor
microenvironment, including nutrient deprivation, acidi-
fication, hypoxia, and immunosuppressive signals [2, 3],
in conjunction with persistent antigen stimulation trig-
gers a program of exhaustion in T cells (Figure 1A).
Exhausted T cells exhibit reduced cytotoxicity and mini-
mal proliferation potential, physiologically balancing tis-
sue health with control of chronic viral infection or of
tumor growth [4, 5]. Strategies to disengage or rewire
the “erroneously” deployed exhaustion program to exploit
the full potential of tumor-fighting T cells are highly
sought after (Figure 1B). The characteristic ex vivohandling
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steps to manufacture the cell product offer near-endless
opportunities for their selective pharmacologic or genetic
manipulation [1, 2].
Recently, Zhao et al. [6] reported in Nature Biotech-

nology that CAR T cells transgenically overexpressing
interleukin-10 (IL-10) excelled over second-generation
CAR T cells in various syn- and xenogeneic models of liq-
uid and solid tumors. While IL-10 is best known for its
anti-inflammatory and even exhaustion-promoting effects
[1, 4], cytokines exert pleiotropic effects, and the adminis-
tration of PEGylated IL-10 [7] or of an IL-10-Fc fusion pro-
tein had previously been shown to support expansion and
cytotoxicity of exhausted TILs, potentiating ACT, immune
checkpoint blockade (ICB) [8], and tumor immune surveil-
lance [7]. Now, the authors took this principle to the next
level.
Exhaustion is driven by mitochondrial dysfunction and,

at least in part, by subsequent increases in reactive oxygen
species. Thus, protecting mitochondrial integrity appears
to be fundamental to successful ACT of solid tumors [3].
IL-10 increased mitochondrial fitness of therapeutic T
cells as IL-10-expressing CAR T cells had mitochondria
with dense, functional morphology and high membrane
potential, which culminated in enhanced oxidative phos-
phorylation, tumor infiltration, and effector functions.
Inhibition or genetic deletion of mitochondrial pyruvate
carrier 1 (MPC1) largely abrogated the benefit of IL-10
overexpression in in vitro experiments [6] (Figure 1C),
suggesting that greater mitochondrial fitness was a pre-
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F IGURE 1 IL-10 overexpression promotes accumulation of effector-exhausted CAR T cells by induction of AP-1 transcription factors.
Upon acute or chronic activation, T cells undergo a hierarchical process of memory differentiation or exhaustion, respectively. Strength and
duration of stimulation, among others, drive the progressive differentiation towards terminally differentiated states. Differentiation of
endogenous and therapeutic, tumor-reactive T cells in cancer is skewed towards exhaustion. The exhausted state is thought to be fixed
epigenetically early on, ruling out re-differentiation of exhausted T cells towards bona fide memory T cells. (A) Stylized T cell differentiation
hierarchy under chronic activation where arrow width represents cell density and arrow length represents differentiation speed. (B) Top left:
Chronic T cell stimulation by tumor antigens promotes exhaustion. Top right: ICB promotes the proliferation of TPEX cells, expanding the
reservoir of tumor-reactive cells. Bottom left: IL-10 acts directly on TINT-EX and TEFF-EX cells, promoting their expansion and effector activity.
Bottom right: Alternative approaches (“diversion”), e.g., preventing the manifestation of exhaustion by modulating epigenetic imprinting,
aim to promote the differentiation of functional anti-tumor T cells. (C) IL-10 or IL-21 presumably induce STAT3 phosphorylation, resulting in
induction of AP-1 transcription factors Jun and Fos, which, together with NFAT, drive the transcription of effector molecules including
granzymes, perforin 1, and interferon-γ. The functional improvements depend on mitochondrial pyruvate import in vitro. Panel created with
biorender.com. Abbreviations: CAR, chimeric antigen receptor; IL, interleukin; ICB, immune checkpoint blockade; TN, naïve T cell; TSCM,
stem-like memory T cell; TCM, central memory T cell; TEM, effector memory T cell; TEFF, effector T cell; TEFF-EX, effector-exhausted T cell; TEX,
terminally exhausted T cell; TINT-EX, intermediate-exhausted T cell; TST-PEX, short-term precursor exhausted T cell; TLT-PEX, long-term
precursor exhausted T cell; STAT, signal transducer and activator of transcription; AP-1, activator protein 1; NFAT, nuclear factor of activated
T cells.

requisite to preserve effector functions. Remarkably, even
the anti-tumor efficacy of CAR T cells using the 4-1BB
co-stimulatory domain, which favors oxidative phosphory-
lation for enhancedmetabolic fitness [2], was strengthened
by IL-10 overexpression [6].
To understandhowmitochondrial fitness bolstered ther-

apeutic efficacy, Zhao et al. [6] investigated intratumoral
CAR T cells by single-cell RNA-sequencing. T cell exhaus-
tion is thought to be a continuous process following the
same hierarchy as memory T cell differentiation: the least
differentiatedmemory T cells [stem-like memory T (TSCM)
cells] show the highest degree of plasticity, proliferation
potential, and self-renewal, which they gradually loose
with continued proliferation and acquisition of effector
functions [9] (Figure 1A). Molecularly, stemness features
are reflected in the expression of transcription factors
(TFs) T-cell factor 7 (TCF7) and MYB in these cells.
Likewise, TCF1 and MYB identify the exhausted T cell

subset with the greatest proliferative capacity, designated
as (long-term) precursor exhausted T (TPEX) cells [5, 9].
TPEX cells serve as the reservoir for the more differentiated
intermediate-exhausted T (TINT-EX) and effector or termi-
nally exhaustedT (TEFF-EX/TEX) cells and are thus required
for successful ICB (Figure 1A) [4, 5, 9].
Notably, CAR T cells either with or without IL-10 trans-

gene transcriptionally mapped with TEFF-EX/TEX cells in
the analysis of Zhao et al. [6], while genes upregulated
in intratumoral IL-10-expressing CAR T cells included
effector molecules such as granzymes, perforin 1, and
interferon-γ as well as the activator protein 1 (AP-1) TFs
Jun and Fos (Figure 1C). Unfortunately, the underlying
map does not further differentiate TEFF-EX/TEX states. Yet,
based on the transcriptional signature and congruent with
the effect of IL-21/signal transducer and activator of tran-
scription 3 (STAT3) signaling [5, 9], IL-10 presumably
favored TEFF-EX over TEX cell differentiation at the TINT-EX
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junction [10] (Figure 1B). Indeed, in their previous study,
the authors had clearly demonstrated that, unlike ICB [4,
5, 9], IL-10-Fc did not require the proliferation of TPEX cells
but reinvigorated TEFF-EX/TEX cells (Figure 1B), which re-
gained some effector functions and proliferative capacity
[8]. The combination treatment with half-life extended IL-
10 and ICB currently undergoes clinical testing withmixed
results and a notable rate of adverse events [7]. Given the
limited tolerability of high systemic IL-10 doses required
for therapeutic efficacy, CAR T cells “armored” with trans-
genic IL-10 offer the appealing benefit to increase local
IL-10 concentrations sufficiently in the absence of systemic
toxicity, making the strategy a prime candidate for clinical
testing.
Some interesting questions emerge. Typically, AP-1 TFs

downstream of STAT3 signaling are known to balance
induction of the TF nuclear factor of activated T cells
(NFAT) in control of the initiation and progression of
exhaustion (Figure 1C), among others, by promoting TPEX
maintenance [5, 10]. How IL-10 CAR T cells pass through
this developmental checkpoint to form TEFF-EX cells and
which genetic programs prevent their attrition may reveal
exciting starting points for further improvements of ACT.
Interestingly, inhibition of MPC1 or of lactate dehydroge-
nase A during the CAR T cell manufacturing procedure
promoted the cells’ functionality [2], and synergies of these
approaches with synthetic IL-10 expression are conceiv-
able. Exploring designer variants of IL-10 [7], including
orthogonal IL-10/IL-10R systems, might help to restrain
the impact of IL-10 to therapeutic T cellswhichmay further
boost their efficacy and safety. Lastly, initial data hinting
at improved memory formation of IL-10-expressing CAR
T cells might be confounded by differences in antigen load
at the analysis timepoint [5, 6] and require further analysis
in a more controlled setting.
The development of advanced engineering approaches

diverting chronically stimulated T cells from exhaustion
programing (Figure 1B) or driving natural or synthetic T
cell states that retain both cytotoxicity and persistence,
as exemplified in this study, holds great promise of next-
generation cell therapies [1]. Reference maps need to be
refined and extended to accurately reflect the entire T cell
differentiation space including non-physiological differen-
tiation states that can occur, e.g., when using orthologous
cytokine systems or synthetic genetic circuits. This will
provide higher resolution of developmental trajectories
as well as of the transcriptional and epigenetic programs
engaged by therapeutic T cells, and aid to identify potential
synergies between different optimization strategies.
In summary, the current study highlights IL-10-

expressing CAR T cells as an exciting opportunity for
clinical translation that may offer a potent solution for

solid tumor therapy and a decisive step forward for
long-lasting control of liquid tumors.
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