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1 | BACKGROUND

Abstract

Phagocytosis, a vital defense mechanism, involves the recognition and elim-
ination of foreign substances by cells. Phagocytes, such as neutrophils and
macrophages, rapidly respond to invaders; macrophages are especially impor-
tant in later stages of the immune response. They detect “find me” signals
to locate apoptotic cells and migrate toward them. Apoptotic cells then send
“eat me” signals that are recognized by phagocytes via specific receptors. “Find
me” and “eat me” signals can be strategically harnessed to modulate antitumor
immunity in support of cancer therapy. These signals, such as calreticulin and
phosphatidylserine, mediate potent pro-phagocytic effects, thereby promoting
the engulfment of dying cells or their remnants by macrophages, neutrophils,
and dendritic cells and inducing tumor cell death. This review summarizes the
phagocytic “find me” and “eat me” signals, including their concepts, signaling
mechanisms, involved ligands, and functions. Furthermore, we delineate the
relationships between “find me” and “eat me” signaling molecules and tumors,
especially the roles of these molecules in tumor initiation, progression, diagno-
sis, and patient prognosis. The interplay of these signals with tumor biology is
elucidated, and specific approaches to modulate “find me” and “eat me” signals
and enhance antitumor immunity are explored. Additionally, novel therapeutic
strategies that combine “find me” and “eat me” signals to better bridge innate
and adaptive immunity in the treatment of cancer patients are discussed.

KEYWORDS
cancer immunotherapy, CARL, CX3CL1, “Eat me” signal, “Find me” signal, Fc, LPC,
Phagocytosis, PtSer, SLAMF7

7 (SLAMF7), Fc receptors (FcRs), and PS. Once phago-
cytes migrate to the vicinity of apoptotic cells, their surface

Phagocytes, including mononuclear phagocytes and neu-
trophils [1-3], comprise two major cell types that play
a significant role in immune responses by binding and
engulfing dying cells, thereby enhancing or suppressing
inflammation (Table 1). Phagocytes execute their functions
through three primary steps: “find me”, “eat me”, and
“digest me” [4-6].

The “find me” signals recognized by phagocytes include
nucleotides such as adenosine triphosphate (ATP) and
uridine triphosphate (UTP), membrane lipids like phos-
phatidylserine (PS), chemokines such as C-X3-C motif
chemokine ligand 1 (CX3CL1) [4], polyamines [52], and
others. These signals not only attract phagocytes but also
prepare them for action, such as increasing the expression
of phagocytic receptors and factors involved in diges-
tive processes. On the other hand, the “eat me” signals
recognized by phagocytes include calreticulin (CALR), sig-
naling lymphocytic activation molecule family member

receptors recognize and bind these “eat me” signals,
enabling phagocytosis.

The recognition of “find me” and “eat me” signals
by phagocytes is crucial for efficient phagocytic activ-
ity, enabling timely signaling for effective clearance of
apoptotic cells by phagocytes. “Find me” signals attract
immune cells to the location of apoptotic cells, while “eat
me” signals tag apoptotic cells for phagocytosis and clear-
ance, facilitating cell clearance and tissue repair. The “find
me” and “eat me” signals have immune regulatory func-
tions; these signals can enhance the phagocytic activity
of macrophages and mediate anti-inflammatory effects by
regulating the production of cytokines, which can medi-
ate macrophage phagocytosis of tumors and provide ideas
for cancer treatment [53]. Therefore, a comprehensive
understanding of the mechanisms by which phagocytes
recognize “eat me” and “find me” signals from apop-
totic cells has practical significance for cancer therapy.
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TABLE 2

Major
dependencies for
“Find me” signal release/exposure

LPC Caspase3 G2A

SIP SphK GPCR

Nucleotides (ATP, UTP) PANX1 P2Y2,

P2RX7

CX3CL1 Caspase and Bcl-2 CX3CR1

RP S19 Unknown C5aR

(CD88)

CXCR3

CXCR1,
CXCR3

TryRS Unknown

EMAPIL Caspase-7

Mechanisms of “find me” signal release and recognition.

Receptors

References
[16, 54, 55]

Downstream biological effects

Mediates migration of macrophages to
apoptotic cells

Inhibits apoptosis, induces cell
proliferation and/or migration and
increases drug resistance via
inhibition of BAX-caspase-3 signaling,
induces survival autophagy and/or
inhibition of serine/threonine-protein
phosphatase 2A (PP2A)

Amplifies chemotactic signals and
directs cell orientation via feedback

The CX3CL1-CX3CR1 axis activates G
proteins and the MAPK and AKT
signaling pathways involved in tumor
biology, and it plays an antitumor role
by recruiting immune cells to control
tumor growth; however, it can also
stimulate a pro-tumor response

L131DR, 1134AGQVAAAN, and
K143KH in the RP S19 C-terminus
contribute to C5aR binding, plasma
membrane penetration, and
interactions with molecules like delta
lactoferrin or annexin A3, respectively,
to activate the p38 MAPK pathway in
macrophages

[17, 56]

[25, 57-59]

[26, 58, 60, 61]

[18, 27]

Unknown [62, 63]

Unknown [64, 65]

Abbreviations: ATP, adenosine triphosphate; Bcl-2, B-cell lymphoma 2; C5aR (CD88), C5a receptor (Cluster of Differentiation 88); CX3CL1, C-X3-C motif
chemokine ligand 1; CX3CR1, CX3C chemokine receptor 1; CXCR1, C-X-C motif chemokine receptor 1; CXCR3, C-X-C motif chemokine receptor 3; EMAPII,
endothelial monocyte-activating polypeptide IT; G2A, G-protein coupled receptor 2A; GPCR, G protein-coupled receptor; LPC, lysophosphatidylcholine; P2RX7,
P2X purinoceptor 7; P2Y2, P2Y purinoceptor 2; PANXI, pannexin-1; RP S19, ribosomal protein S19; S1P, sphingosine-1-phosphate; SphK, sphingosine kinase; TryRS,

tyrosyl-tRNA synthetase; UTP, uridine triphosphate.

This review summarizes the roles of “eat me” and “find
me” signals in tumor development and explores how
modulating these signals, in combination with other
therapeutic approaches, can enhance antitumor immune
responses.

2 | “FIND ME” AND “EAT ME” SIGNALS
WITH THE ABILITY TO SUPPORT
PHAGOCYTIC FUNCTION

2.1 | “Find me” signals

“Find me” signals are chemoattractants that guide phago-

cytes to sites of cell death. We briefly describe the concept
of “find me” signaling molecules, the reasons for sig-

nal release, the relevant ligands, and their functions
(Figures 1-2, Table 2).

2.1.1 | Lysophosphatidylcholine (LPC)

One of the first identified recruitment signals for the
phagocytosis of apoptotic cells is LPC [66], which is a major
phospholipid component of oxidized low-density lipopro-
tein (LDL) [67]. LPC has been described as a surface target
for natural immunoglobulin M (IgM) antibodies and may
function as a dual “find me” and “eat me” signal [68].
LPC release from apoptotic cells may involve caspase-3-
mediated phospholipase A2 (PLA2) activation. PLA2 is
an enzyme that hydrolyzes SN-2 acyl groups of phospho-
lipids, releasing lysophospholipids and polyunsaturated
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“Find me” signals
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“Eat me” signals

5,;&, CALR

“Find me” and “eat me” signals and their receptors. The primary “find me” signals, including ATP, LPC, S1P, CX3CL1, RP

S19, LPC, TryRS, and EMAPII, interact with receptors such as adenosine, G2A/GPR4, S1PR, CX3CR1, CD88, CXCR3, and CXCRI. Similarly,
the main “eat me” signals, consisting of CALR, SLAMF?7, Fc, and PtdSer, engage with receptors such as LRP1, SLAMF?7, FcR, aV{33, and
BAI1/PSR1/TIM1/3/4. ADORA receptors, adenosine A receptors; ATP, adenosine triphosphate; BAIl, brain-specific angiogenesis inhibitor 1;
CALR, calreticulin; CX3CLI, C-X3-C motif chemokine ligand 1; CX3CR1, CX3C chemokine receptorl; CXCR1, CXC-chemokinereceptorl;
CXCR3, CX3C chemokine receptor 1; EMAPII, endothelial monocyte activating polypeptide II; G2A, G-protein coupled receptor 2A; GPR4,
G-protein coupled receptor 4; LPC, lysophosphatidylcholine; LRP1, low-density lipoprotein receptor-related protein 1; MFG-ES8, milk fat

globule-epidermal growth factor 8; PSR1, phosphatidylserine receptor 1; PtdSer, phosphatidylserine; RP S19, ribosomal protein S19; S1P,

Sphingosine-1-phosphate; S1PR, sphingosine-1-phosphate receptor; SLAMF7, signaling lymphocytic activation molecule family member 7;
TIM1/3/4, T cell immunoglobulin and mucin domain 1/3/4; TryRS, tyrosyl tRNA synthetase; aVf33, integrin alpha V beta 3.

fatty acids, which promote monocyte migration [54, 69].
Elevated PLA2 levels during apoptosis lead to more LPC
release. IgM antibodies recognize LPC, triggering comple-
ment activation, which attracts phagocytes to apoptotic
cells [70, 71]. ATP-binding cassette transporter Al (ABCAI)
dysfunction causes cholesterol buildup in macrophages,
promoting the formation of foam cells. Knockout of ABCAI
reduces macrophage chemotaxis toward apoptotic cells,
but the effect of decreased LPC levels in apoptotic cell
supernatants remains uncertain [72]. Notably, G protein-
coupled receptor 4 (GPR4) and G2 accumulation protein
(G2A) are receptors associated with the recognition of
LPC by phagocytes, and G2A exhibits higher affinity

than GPR4 [55]. Reducing G2A expression may decrease
the ability of phagocytes to migrate toward apoptotic
cells [66].

2.1.2 | Nucleotides (ATP and UTP)

Another group of “find me” signals that play crucial roles
in various biological processes are nucleotides, such as
ATP and UTP [73]. Nucleotides play vital roles in funda-
mental biological processes such as genetics, development,
and growth and influence activities such as cell migration,
chemotaxis, cytokine release, maturation, and cytotoxicity
[74].
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FIGURE 2 “Find me” signals. The different “find me” signals released from apoptotic cells, their known or putative mechanisms of
release, and the possible receptors on phagocytes that can regulate chemotaxis. Apoptotic cells release “find me” signals, such as nucleotides,
LPC, S1P, CX3CLl1, RP S19, TryRS, and EMAPII, to the extracellular space; these signals can interact with P2Y2, GPR4, S1PR1-5, CD88,
CXCR1/CXCR3, and CXCR3 on macrophages, respectively. Pannexin channels, activated by caspase-3/7 during apoptosis, release “find me”
signals like nucleotides. The released ATP induces phagocyte migration via P2Y2 receptors. ABCAl-transported PLA2 transforms into sPLA2,
hydrolyzing phospholipids to generate LPC. LPC binds GPR4, inducing macrophage migration. TG2 acts as a chemoattractant for
macrophages by cross-linking RP S19 monomers. CD88 senses RP S19, mediating monocyte migration. CX3CL1’s release mechanism is
unclear, but its chemotactic effect on phagocyte relies on CX3CR1. Post-proteolysis, EMAPI and TyrRS exhibit chemotactic properties. EMAPI
may result from caspase-7 cleavage, while elastase from neutrophils generates TyrRS. TyrRS stimulates phagocyte migration through CXCR1
and CXCR3. EMAPII promotes endothelial progenitor cell migration via CXCR3, which is unrelated to apoptotic cell clearance. Intracellular
S1P, synthesized by SphKs, is released through Mfsd2b. The extracellular SphK1 levels remain stable, indicating that mainly intracellular S1P
is produced. During apoptosis, SphK2 can be secreted; this mechanism explains why extracellular SIP production primarily depends on
SphK2. Released S1P can bind to SIPR1-5. ABCAI, ATP-binding cassette transporter Al; CD88, cluster of differentiation 88; CX3CL1, C-X3-C
motif chemokine ligand 1; CX3CR1, CX3C chemokine receptor 1; CXCR1, C-X-C motif chemokine receptor 1; CXCR3, C-X-C motif chemokine
receptor 3; EMAPII, endothelial monocyte-activating polypeptide II; GPR4, G-protein coupled receptor 4; iPLA2, independent phospholipase
A2; LPC, lysophosphatidylcholine; P2Y2, P2Y purinoceptor 2; PANXI, pannexin-1; PLA2, phospholipase A2; RP S19, ribosomal protein S19;
S1P, sphingosine-1-phosphate; SIPR1-5, sphingosine-1-phosphate receptors 1-5; SphK1, sphingosine kinase 1; SPLA2, secretory phospholipase
A2; TG2, transglutaminase 2; TyrRS, tyrosyl-tRNA synthetase.

Nucleotides can be released from cells through passive membrane-derived microvesicles [78], ATP-binding cas-
leakage and active secretion [75]. Passive release occurs sette (ABC) transporters [79, 80], and others. Cystic fibrosis
from dying and damaged cells [76, 77], while active release ~ transmembrane conductance regulator (CFTR) has also
relies on pathways such as exocytosis of secretory vesi- been considered to participate in an ATP release path-
cles derived from the outer embryonic layer [78], plasma  way [81], but a subsequent study has failed to confirm
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this finding [82]. Currently, five channel families have
been proven to mediate the physiological and pathologi-
cal release of ATP, namely, connexin hemichannels [78],
pannexin-1 (PANX1) [78], calcium homeostasis modulator
1 [83], volume-regulated anion channels [84], and maxi-
anion channels [85]. In addition, the purinergic P2x7
receptor (P2x7R), an ATP-gated ion channel, also plays
a role in ATP release [86]. However, nucleotide release
is primarily dependent on the PANXI1 channel, a com-
plex structure that spans the cell membrane and opens
during cell apoptosis, leading to nucleotide release and
promoting phagocyte chemotaxis to enable the phagocy-
tosis and digestion of apoptotic cells [57]. Early apoptotic
cells release less than 2% of the total cellular ATP through
PANX1, while the loss of membrane integrity caused by
cell damage may result in the release of more nucleotides
[87]. During apoptosis, caspase-3 and caspase-7 cleave the
C-terminus of PANXI, leading to channel opening and
thus allowing nucleotides to be released through the chan-
nel to the extracellular space [52]. Despite the presence of
higher intracellular ATP levels, the change in extracellu-
lar ATP and UTP concentrations is not substantial. Further
research is needed to ascertain whether PANX1 favors UTP
and promotes UTP release or if ATP undergoes metabolic
degradation during apoptosis.

The release of ATP and UTP from early apoptotic cells
can effectively attract monocytes both in vitro and in vivo.
Removing ATP and UTP (through apyrase or ecto-CD39
expression) weakens the ability of apoptotic cells to recruit
monocytes to both extracellular and intracellular environ-
ments [88]. Released ATP induces phagocyte migration
through the purinergic receptor P2Y [58], UTP is degraded
by extracellular nucleotidases to UDP, and UDP released
from damaged microglia induces upregulation of P2Y in
the hippocampus, contributing to the clearance of dam-
aged cells [89]. Nucleotides also promote phagocytosis by
inducing the binding of CD11b and integrin a583 [90, 91].

2.1.3 | Sphingosine-1-phosphate (S1P)

S1P is a multifunctional lysophospholipid that serves as a
“find me” signal which is derived from the sphingolipid
metabolic pathway; S1P plays a critical role in regulating
cellular processes such as lymphocyte migration, vascu-
lar integrity maintenance, and cytokine and chemokine
generation [92]. SIP is synthesized through the phos-
phorylation of sphingosine by intracellular sphingosine
kinases (SphKs) and can be released into the extracellu-
lar space through transport proteins [56]. S1P is exported
by the major transport protein major facilitator super-
family domain-containing 2b (Mfsd2b), and the plasma
levels of SIP are significantly reduced in Mfsd2b-deficient

mice [93]. SIP released from dying cells activates pro-
erythrocyte signaling in macrophages, thereby promoting
the clearance of apoptotic cells and immune tolerance
[94, 95]. There are five related G-protein-coupled receptors
(GPCRs), known as S1PR1-5, that are involved in S1P-
induced chemotaxis. S1P activates downstream signaling
pathways by binding to S1PR1-5. Monocytic phagocytes
express all known SIPR family members, making it dif-
ficult to determine which S1PR is most important [96].
Among them, S1PR1 has been a focus of research due to
its role in regulating T-cell and B-cell migration, making it
a key drug development target [97].

214 | CX3CL1

CX3CL1 (also known as Fractalkine), a chemokine and
intercellular adhesion molecule, is released rapidly from
apoptotic lymphocytes via caspase- and Bcl-2-regulated
mechanisms to attract macrophages [60]. CX3CLl1 is the
sole member of the CX3C chemokine subfamily. It is
composed of 373 amino acids and is a transmembrane gly-
coprotein characterized by the insertion of three amino
acids between two cysteine residues [98, 99]. CX3CL1 exists
in two forms: membrane-bound and soluble. Membrane-
bound CX3CL1 is a membrane-associated protein that
contains a cytoplasmic domain, transmembrane domain,
mucin-like stalk, and chemokine domain. Soluble CX3CL1
is generated via the cleavage of membrane-bound CX3CL1
by A disintegrin and metalloproteinase (ADAM) [100,
101]. CX3CL1 release can be spontaneous or induced by
various factors. Under normal conditions, ADAMI0 nat-
urally cleaves membrane-bound CX3CLl1 to form soluble
CX3CLl. Inflammatory agents such as lipopolysaccharide
and interleukin-1 beta (IL-13) can enhance this release
through ADAM17. Membrane-bound CX3CL1 promotes
monocyte adhesion to endothelial cells [98], while solu-
ble CX3CL1 chiefly attracts monocytes [98], T cells [98],
and natural killer (NK) cells [102, 103]. CX3CL1 is rapidly
released from apoptotic lymphocytes through caspase
and Bcl-2 regulatory mechanisms to induce macrophage
chemotaxis. CX3CR1 is the receptor for CX3CL1 [98] and is
a seven-transmembrane G-protein-coupled receptor con-
sisting of extracellular, transmembrane, and intracellular
regions; it appears to be crucial for sensing intracellu-
lar and extracellular chemokines and inducing monocyte
migration [104]. CX3CR1 is mainly expressed on mono-
cyte, leukocyte, and platelet membranes and mediates cell
migration and adhesion by binding with CX3CL1. CX3CR1
has stable adhesion ability and exerts strong adhesive
effects on circulating monocytes, T cells [105], and NK cells
[106], and CX3CRl-expressing T cells exhibit enhanced
cytotoxicity [98, 99, 107]. The absence of CX3CR1 leads to
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reduced chemotaxis of macrophages toward the germinal
centers of apoptotic B cells [58].

2.1.5 | Other “find me” signals

In addition to the aforementioned “find me” signals,
there may be other undiscovered “find me” signals. To
date, researchers have reported several factors that induce
phagocyte chemotaxis, such as the ribosomal protein S19
(RP S19) dimer [18], two cell cytokine activity fragments
generated from the cleavage of human tyrosyl-transfer
RNA synthetase (TyrRS) (N-terminal fragment and C-
terminal fragment) [62, 63], and endothelial monocyte-
activating polypeptide II [64, 65]. Future research could
elucidate whether these “find me” signals indeed impact
phagocyte chemotaxis.

2.2 | “Eatme” signals

“Eat me” signals are a class of signaling molecules that can
bind to phagocyte membrane receptors and induce phago-
cytes to perform their engulfment function. In this section,
the known “eat me” signals, including CALR, SLAMF7,
and FcR, will be discussed in terms of concept, structure,
reasons for signal release, ligands, and functions (Figures 1
& 3, Table 3)

221 | CALR

Cell surface-exposed CALR, functioning as an “eat me”
signal, delivers potent pro-phagocytic signals to antigen-
presenting cells (APCs), including dendritic cells (DCs)
and their precursors [130, 131]. CALR is an endoplasmic
reticulum (ER)-resident protein that consists of 417 amino
acids (46 kDa) and is involved in various cellular pro-
cesses, such as cell adhesion, migration, apoptosis, protein
folding, and protein modification [132-134]. CALR is com-
posed of three distinct domains: (1) an N-terminal lectin-
like globular domain, (2) a central proline-rich domain,
and (3) a highly acidic C-terminal region [135]. Addition-
ally, there is a Lys-Asp-Glu-Leu-COO amino acid sequence
(KEDL) at the C-terminus, which retains CALR in the ER
[136]. CALR serves as a guide for macrophages to target
live cancer cells [137]. CALR moves from the macrophage
ER to the cell surface via ER stress molecules. Apoptotic
triggers activate protein kinase R (PKR)-like endoplasmic
reticulum kinase (PERK), which phosphorylates eukary-
otic translation initiation factor 2 subunit alpha (eIF2a).
Subsequent caspase-8 activation leads to the cleavage of

B-cell receptor-associated protein 31 (BAP31), activating
Bcl-2-associated X protein (Bax) and Bcl-2 homologous
antagonist/killer (Bak). These activated proteins aid in the
transfer of CALR from the ER to the Golgi, followed by
soluble N-ethylmaleimide-sensitive factor attachment pro-
tein receptor (SNARE)-dependent exocytosis to the cell
membrane [133, 138]. However, PERK-mediated phospho-
rylation of elF2« is inhibited by B7 homolog 4 (B7-H4),
which is associated with poor T-cell infiltration and prog-
nosis in cancer [139]. Additionally, research has revealed
that CALR moves from the ER to the cytosol through the
nucleus, interacting with various proteins along the way.
In the cytosol, it is converted to CALR-Arg, and in the
presence of inducible nitric oxide synthase, it can produce
nitric oxide byproducts [140]. On the cell membrane, both
citrullinated and arginylated CALR isoforms have been
identified.

2.2.2 | SLAMF7

The SLAMF receptor consists of a group of type I trans-
membrane receptors, including SLAMF4 (also known
as 2B4), SLAMF3 (also known as Ly9), SLAMF7 (also
known as CRACC), SLAMF2 (also known as CD48),
SLAMF]1 (also known as SLAM), SLAMFS8 (also known
as BLAME), SLAMF5 (also known as CD84), SLAMF9
(also known as SF2001), and SLAMF6 (also known as
SF2000 in humans or Lyl08/ CD352 in mice) [114, 115,
141-143]. Except for 2B4, which binds to CD48 as its
ligand [144-146], all other SLAM family receptors are self-
ligands, thus triggering downstream signaling pathways
in heterotypic or homotypic cell-cell interactions [142,
147]. SLAMF signals are mediated via their cytoplasmic
immunoreceptor tyrosine-based switch motifs (ITSMs),
which recruit a series of adapter proteins containing only
SH2 domains, including SLAM-associated protein (SAP)
and its homologs EWS/FLI1 activated transcript 2 (EAT-2)
and EAT-2-related transducer [146, 148, 149]. SLAMF3 and
SLAMF4 have been identified as “do not eat me” recep-
tors on macrophages [150]. They suppress “eat me” signals
by impeding mammalian target of rapamycin (mTOR)
and spleen tyrosine kinase (Syk) activation via low-
density lipoprotein receptor-related protein 1 (LRP1). In
parallel, they activate macrophages through SH2 domain-
containing phosphatases, facilitating the engulfment of
hematopoietic cells lacking SLAM family receptors (SFRs).
While SFRs can work alongside the CD47 pathway, they
independently reduce macrophage phagocytosis.

In the context of the SLAM receptor family, we focus
on SLAMF?7, a vital “eat me” signal critical for the phago-
cytosis of hematopoietic tumor cells via Mac-1 integrin
[116]. SLAMF7 is a transmembrane receptor with three
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“Eat me” signals and downstream responses upon binding to phagocyte receptors. Stress-induced and dying tumor cells

expose CALR on the cell surface, which binds to LRP1 on phagocytes, possibly recruiting GULP1 to regulate phagocytosis. SLAMF7 on
macrophages binds to MAC-1, which, in turn, recruits FCRy and DAP12, activating Syk and Btk kinases to promote phagocytosis.

Macrophages express Fcy receptors (FcyR-1Ib, FcyR-I, FcyR-II1a, and FcyR-1I1a). Crosslinking these receptors with IgG complexes triggers
ITAM phosphorylation, activating the Syk, Src, and Pkc pathways, and leading to actin remodeling, which is crucial for the phagocytosis of
IgG immune complexes. BAIL, brain-specific angiogenesis inhibitor 1; Btk, Bruton’s tyrosine kinase; C1q/C3b/C4, complement components
1q/3b/4; CD300, cluster of differentiation 300; Cdc42, cell division control protein 42; CR1/3/4, complement receptors 1/3/4; DAPI12,
DNAX-activating protein of 12 kDa; FcRy, Fc receptor gamma chain; Gas6, growth arrest-specific protein 6; GULP1, Engulfment adaptor PTB
domain-containing 1; GULP1, engulfment adaptor PTB domain-containing 1; LRP1, low-density lipoprotein receptor-related protein 1; MAC-1,
macrophage-1 antigen; MFG-ES8, milk fat globule epidermal growth factor 8; Pke, protein kinase C; ProS, Protein S; PSR1, phosphatidylserine
receptor 1; PtdSer, Phosphatidylserine; Racl, Ras-related C3 botulinum toxin substrate 1; RAGE, receptor for advanced glycation end products;
RhoA, Ras homolog family member A; Sfk, Src family kinases; SLAMF7, signaling lymphocytic activation molecule family member 7; Src, Src

kinase; Syk, spleen tyrosine kinase; TAM, Tryo3/Axl/Mer; TIM1/3/4, T cell immunoglobulin and mucin domain 1/3/4; Vavl, vav guanine
nucleotide exchange factor 1; aV33/aV[35, integrin alpha V beta 3/ alpha V beta 5.

parts: the extracellular, transmembrane, and cytoplasmic
regions. The cytoplasmic region contains ITSMs, including
Y281 for activation and Y261 for inhibition of its signal-
ing pathways [143]. SLAMF?7 is expressed at low levels in
CD4* T cells, monocytes, macrophages, DCs, and B cells
[116, 151, 152] and is highly expressed in normal plasma
cells and malignant plasma cells in multiple myeloma
[153]. Additionally, it can also be expressed on NK cells
[154] and immune cell subsets (such as CD8" T cells

[155]). In contrast to that mediated by other members of
the SLAM receptor family, the phagocytic activity medi-
ated by SLAMF?7 is independent of the SAP adapter [117].
SLAMF7 mediates its activation or inhibitory function
through the EAT-2 bridging protein [156-163]. However,
in the absence of EAT-2, SLAMF7 can recruit Src homol-
ogy region 2 domain-containing phosphatase-1 (SHP-1),
SHP-2, SH2 domain-containing inositol polyphosphate 5-
phosphatase 1 (SHIP1), C-terminal Src kinase (Csk), and
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TABLE 3 Mechanisms of “eat me” signal release and recognition.

Major

dependencies

for release/
“Eat me” signal exposure Receptors Downstream biological effects References
CALR Exocytic LRP1(CD91) Recruits the adapter protein PTB [108-113]

domain-containing engulfment adapter
protein 1 (GULP1) to regulate promote
phagocytic processes

SLAMF7 - CRACC (CD319) SLAMF7 on macrophages binds to [114-117]
MAC-1, which interacts with FCRy and
DAPI2, recruiting the Src family kinases
Syk and Btk to promote phagocytosis

Fc - FcR Activated immune cells can clear [118-121]
pathogenic microorganisms through
mechanisms like antibody-mediated

phagocytosis and ADCC
Phosphatidylserine Phospholipid BAIl Directly recruits a Rac-GEF complex to [28,122,123]
(PtdSer) and scramblase/ mediate the uptake of apoptotic cells
oxidized PtdSer amino- TIM1/3/4 TIM-1 enhances T-cell activation in Th2 [29-32, 124]
phospholipid cells, while TIM-3 in Th1/Tcl cells
translocase induces cell death and assists dendritic

cells in phagocytosis and antigen
presentation; TIM-4, which is found
exclusively on antigen-presenting cells,
supports phagocytosis and immune
tolerance

Stabilin-2 Phosphatidylserine recognition on the [33-35, 125]
cell surface activates signaling via the
CrkII/DOCK180/ELMO or Gulpl
pathways, leading to actin
rearrangement and apoptotic cell
engulfment through CED-10/Racl

CD300 CD300b enhances engulfment by [19, 36, 37]
binding to F-actin at apoptotic cell
contacts, and activation via DAP12 with
a functional ITAM motif is essential;
binding to apoptotic cells triggers the
PI3K-Akt pathway, but silencing
CD300b reduces it, impairing
efferocytosis
MFG-E8-aV33 Integrin activation triggers tyrosine [20, 38, 39, 126]
kinase (FAK and Src) activation and
signaling to Rho-GTPases (Rac and
Cdc42), regulating the actin

cytoskeleton
Protein S/Gas6- TAM receptors activate PI3K/Akt in [40-43]
Tyro3/Axl/Mer macrophages through direct p85
(TAM) binding or through Grb2 as a bridge;

this leads to phosphorylation of Akt,
suppressing NF-kB translocation,
impacting gene transcription, and
influencing macrophage function and
phenotype
RAGE Unknown [127]

(Continues)
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TABLE 3 (Continued)

Major
dependencies
for release/
exposure Downstream biological effects References

“Eat me” signal Receptors

PSR-1 TAT-1/ATP8A, PSR-1/PSR, and [128]
PAT-2/a-integrin start engulfment,
activating CED-10/Racl via
CED-2/CrklII, CED-5/DOCK180, and
CED-12/ELMO; WSP-1/nWASp aids
actin remodeling during phagocytosis

CD36 Unknown [44,129]
LOX-1 Unknown [129]

Abbreviations: ADCC, antibody-dependent cell-mediated cytotoxicity; Akt, protein kinase B; ATP8A, ATPase phospholipid transporting 8A; BAIL, brain-specific
angiogenesis inhibitor 1; Btk, Bruton’s tyrosine kinase; CALR, calreticulin; CD300, cluster of differentiation 300; CD300b, cluster of differentiation 300b; CD36,
cluster of differentiation 36; CED-10, cell death abnormality-10; CED-12, cell death abnormality-12; CED-2, cell death abnormality-2; CED-5, cell death abnormality-
5; CrKkII, CT10 Oncogenic Gene Homologue II; DAP12, DNAX-activating protein of 12 kDa; DOCK180, dedicator of cytokinesis protein 1; ELMO, engulfment and
cell motility protein; FAK, focal adhesion kinase; Fc, fragment crystallizable region; FcR, Fc receptor; Gas6, growth arrest-specific protein 6; GULP1, engulf-
ment adapter protein 1; LOX-1, lectin-like oxidized low-density lipoprotein receptor 1; LRP1 (CD91), low-density lipoprotein receptor-related protein 1; MAC-1,
macrophage-1 antigen; MFG-ES8, milk fat globule-epidermal growth factor 8; NF-kB, Nuclear factor kappa-light-chain-enhancer of activated B cells; nWASp, neu-
ral Wiskott-Aldrich syndrome protein; PAT-2, phosphatidylserine aminophospholipid translocase 2; PI3K, phosphoinositide 3-kinase; PSR-1, phosphatidylserine
receptor 1; PTB, phosphotyrosine binding domain; Racl, Ras-related C3 botulinum toxin substrate 1; Rac-GEF, Rac GTPase-activating protein; RAGE, receptor
for advanced glycation end products; Rho-GTPases, Rho guanosine triphosphatases; SLAMF?7, signaling lymphocytic activation molecule family member 7; Src,
Src kinase; Syk, spleen tyrosine kinase; TAM, Tyro3/Axl/Mer; TAT-1, transbilayer amphipath transporter-1; TIM1/3/4, T cell immunoglobulin and mucin domain
1/3/4; WSP-1, Wiskott-aldrich syndrome protein 1; «Vf33, integrin alpha V beta 3.

Fyn kinase (Fyn) to effectively inhibit NK cell function
[164, 165].

The phagocytic function of SLAMF7 is dependent
on immunoreceptor tyrosine activation motifs (ITAMs),
which mediate immune cell activation through the Src
kinase (Src), Syk, and Bruton’s tyrosine kinase (Btk)
kinases [166], as well as the interaction of Mac-1 with
FcRy and DNAX-activating protein of 12 kDa (DAP12).
Mac-1 [also known as complement receptor 3 (CR3)]
is an antigen composed of the integrins CD11b and
CD18, which form a heterodimer [167]. Mac-1 at a site
of infection can link phagocytes to target cells contain-
ing inactivated complement-3b (C3bi) and/or 3-glucan or
lipopolysaccharide (LPS), thereby facilitating phagocyto-
sis [168]. SLAMF7-dependent phagocytosis of tumor cells
requires the expression of Mac-1 on macrophages, but Mac-
1 and C3bi have not been demonstrated to interact with
SLAMF7 during phagocytosis [116].

223 | Fc

Fc is a very strong “eat me” signal for macrophages.
FcRs are cell surface proteins that specifically bind to
the Fc portion of antibodies. Various cells express dif-
ferent FcRs with different specificities. FcRs differ in
their ability to bind to antibodies of various structural
types; for example, FcyRs bind to IgG, FcaRs bind to IgA,
FceRs bind to IgE, FcuRs bind to IgM, and FcdRs bind

to IgD [118, 119, 169], thereby inducing different immune
responses.

Based on their functionality, FcRs can be classified into
two categories: those capable of eliciting cellular acti-
vation and those incapable of doing so [120, 121]. The
former typically possesses ITAMs [170-172], while the lat-
ter lacks ITAMs [173]. Among the most prevalent FcRs in
white blood cells are FcyRs, including FcyR-1, FcyR-III,
and FcyR-IV in mice and FcyR-Ia, FcyR-1Ia, and FcyR-
IlTa in humans [174]. For example, FcyR-IIIA activates
lymphocyte-specific protein tyrosine kinase (Lck) in NK
cells [175], while FcyR-ITA and FcyR-IIIA activate Lck/Yes-
related novel protein tyrosine kinase (Lyn) and hematopoi-
etic cell kinase (Hck) in monocytes and macrophages [176].
Similarly, Syk is activated in macrophages and mast cells,
while Zeta-chain-associated protein kinase 70 (ZAP70)
is activated in NK cells. FcyR activation is akin to the
activation of other ITAM-containing receptors. Phospho-
inositide 3-kinase (PI3K) is activated first and produces
phosphatidylinositol 4,5-bisphosphate (PIP2) and recruits
pleckstrin homology (PH) domain-containing molecules
[such as phospholipase C gamma (PLCy) and Tec kinase
(Tec)] through PIP2-PH interactions. Various Tec kinases
{such as Btk [177] and IL-2-inducible T-cell kinase (Itk)
[178]} are activated by FcyR in myeloid cells. During
FcR-dependent macrophage activation, SH2 domain con-
taining leukocyte phosphoprotein of 76-kDa (SLP-76) and
B cell linker protein (BLNK) adapters activate Syk and
interact with Btk and PLCy. Activated PLCy degrades
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PIP2, yielding inositol trisphosphate (IP3) and diacylglyc-
erol (DAG), which leads to calcium mobilization [173,
179-183]. The binding of FcyR-IIB to ITAM-containing
receptors leads to tyrosine phosphorylation of ITIMs by
Lyn kinase, which leads to the recruitment of SHIP and
further inhibition of ITAM-triggered calcium mobilization
and cell proliferation, as well as downstream phagocytic
functions [169, 184]. Morris et al. [185] confirmed the intrin-
sic function of FcyR-IIB in inhibiting mouse and human
CD8* T-cell responses, regulated by fibrinogen-like pro-
tein 2 (Fgl2) as a functional ligand, which modulates the
apoptotic signaling pathway of CD8* T cells, challenging
the previous notion that “T cells do not express FcRs”
[186].

224 | PS

PS, a key glycerophospholipid in eukaryotic cell mem-
branes, consists of glycerol, two fatty acid chains, and
a phosphate headgroup. It is derived from phosphatidyl-
choline (PC) and phosphatidylethanolamine (PE) via the
enzymes phosphatidylserine synthase 1 (PSS1) and PSS2,
and it can be converted to PE via phosphatidylserine decar-
boxylase (PSD) [187]. In higher mammals, PS synthesis is
carried out by two homologous enzymes, phosphatidylser-
ine synthase 1 (PTDSS1) and PTDSS2 [188]. PS is typically
confined to the inner leaflet of the plasma membrane in
healthy cells. However, the exposure of PS on the surface
of apoptotic cells is common and is considered a typical
“eat me” signal for apoptosis [189, 190].

PS is typically kept within the inner layer of the plasma
membrane by a protein called Flippase. During apopto-
sis, a different enzyme, scramblase, is activated, rapidly
exposing PS on the cell’s surface [191, 192]. The Kell blood
group complex subunit (Xk)-related protein 8 (Xkr8) and
cell death abnormality-8 (CED-8) mediate PS exposure
in response to apoptotic stimuli [193-196]. X-ray repair
cross-complementing protein 4 (XRCC4), when cleaved by
caspase-3, can be activated, and its C-terminal fragment
translocates from the nucleus to the cell membrane. Under
apoptotic stimulation, XRCC4 can regulate the activity of
Xkr4, thereby promoting membrane perturbation and PS
exposure [194]. Transmembrane protein 16F (TMEMI16F)
is a Ca®*-dependent lipid scramblase that, in the presence
of Ca?*, moves phosphoserine from the inner leaflet of
the membrane to the cell surface, changing the membrane
structure and possibly aiding in cell membrane repair
[197].

PS can directly bind to PS receptors on the sur-
face of macrophages, such as brain-specific angiogene-
sis inhibitor 1 (BAIL) [122], T cell immunoglobulin and
mucin domain (Tim)-1/3/4 [124], Stabilin-2 [125], CD300

(CD300a, CD300b and CD300f) [19], lectin-like oxidized
low-density lipoprotein receptor 1 (LOX-1) [129], receptor
for advanced glycation end products (RAGE) [127], and
phosphatidylserine receptor 1 (PSR-1) [128], or indirectly
bind through soluble bridging molecules, such as milk
fat globule-EGF factor 8 (MFG-E8)-integrin alphaV beta
(aVB3) [20] and protein S (ProS)/growth arrest-specific
protein 6 (Gas6)-Tyro3/Axl/Mer (TAM) [123,198,199]. Both
proteins that directly bind to PS and those that bind to
PS through bridging proteins possess immune-regulatory
activity. PS signaling can suppress local immunity, pro-
viding tumors with a means to evade detection [200].
PS exposure is not limited to apoptotic cells and is
observed in various cell types, including immune cells
[myeloid-derived suppressor cells (MDSCs), monocytes,
macrophages, activated B cells, and T cells] and cancer
cells [201].

2.2.5 | Other “eat me” signals

In addition to the well-studied “eat me” signals mentioned
above, there are other “eat me” signals that have not been
studied systematically, such as ARS1620-KRAS®!?¢ cova-
lent complex, galectin-3, lactate dehydrogenase C (LDHC),
and ATP synthase subunit alpha.

3 | “FIND ME” AND “EAT ME” SIGNALS
ARE ASSOCIATED WITH TUMORS

Phagocytosis is a fundamental component of the immune
system’s response to cancer. “Find me” and “eat me” are
two important signals that mediate phagocytosis. “Find
me” and “eat me” signaling molecules play important
roles in antitumor immunity. However, under specific cir-
cumstances, certain “find me” and “eat me” signaling
molecules may promote tumor development, recurrence,
and metastasis. This section focuses on the relationship
between “find me” and “eat me” signaling molecules
and the occurrence, development, diagnosis (stage, malig-
nancy, metastasis, and recurrence), and prognosis of
tumors.

3.1 | Role of “find me” signals in tumor
occurrence, development, diagnosis, and
prognosis

311 | LPC

LPC plays a complex role in cancer biology. LPC exerts
a potent chemotactic effect on spleen lymphocytes from
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thymic lymphoma-bearing mice, as well as on NK T cells
[202, 203]. Notably, LPC also plays a crucial role as a ligand
for CD1d-restricted T cells, with subsequent initiation of an
interaction that leads to the release of IL-13. This cytokine,
in turn, promotes tumor growth [204]. LPC is a potential
biomarker for various tumors, such as pancreatic cancer,
colorectal cancer (CRC), and ovarian cancer. A dimin-
ished level of LPC (16:0) has been detected in patients
with intrahepatic cholangiocarcinoma [205], ovarian can-
cer [206], and CRC [207]. Related studies have reported
significantly downregulated expression of various lipids,
including LPC, in the serum of patients with pancreatic
ductal adenocarcinoma, possibly associated with KRAS-
driven metabolic switches [208]. Zhao et al. [207] evaluated
LPC in the plasma as a potential biomarker for CRC, and
the levels of several LPC species, including LPC (18:1)
and LPC (18:2), were significantly reduced in CRC patient
plasma. Additionally, Zeleznik et al. [209] confirmed the
associations of LPC, phosphatidylcholine, ceramide, and
sphingomyelin with overall and histotype-specific ovar-
ian cancer risks. LPC (18:0) levels are inversely linked
to susceptibility to breast, prostate, and colorectal can-
cers [210], and melanoma patients have lower LPC (18:0)
levels than healthy individuals [211]. Squamous cervical
cancer is associated with higher LPC levels than uterine
fibroids [212] and lymphangioleiomyomatosis [213]. LPC
in cholangiocytes induces senescence marker expression,
reactive oxygen species (ROS) production, DNA damage,
and carcinogenesis [214].

The impact of LPC extends to tumor progression and
recurrence. Lower LPC levels are associated with col-
orectal surgery complications [215] and recurrence after
prostate surgery [216]. LPC hinders metastasis; LPC (18:0)
disrupts the protein kinase C (PKC) delta pathway, thereby
curbing melanoma invasion [211]. LPC reduces vascu-
lar cell adhesion molecule-1 (VCAM-1) and P-selectin,
thereby curbing adhesion and lung invasion [217]. Tumors
convert LPC to rigidifying fatty acids that suppress inva-
siveness [218]. LPC limits invasion by blocking lysophos-
phatidic acid (LPA) conversion via autotaxin [219]. LPC
and lipid metabolism have promise as targets for cancer
treatment.

31.2 | ATP

In 1983, Rapaport [220] first demonstrated the antitu-
mor activity of ATP. Exposure to ATP inhibits cancer cell
growth by blocking the cell cycle in the S phase. Fur-
thermore, intraperitoneal injection of ATP (50 mmol/L)
effectively reduces tumor size. Shabbir et al. [221] per-
formed an in vivo study using human prostate cancer
xenografts and showed that daily intraperitoneal admin-

istration of extracellular ATP (eATP) (25 mmol/L) led to
significant tumor regression. Moreover, clinical studies
have reported good tolerance to intravenous ATP in can-
cer patients, with improvements in tumor-related cachexia
and overall health status, suggesting that combining eATP
with other therapeutic approaches may not only help
reduce tumor size but also minimize adverse systemic
effects [222].

ATP released from apoptotic cells, which is converted
into adenosine, reduces inflammation, promotes anti-
inflammatory gene expression, activates APCs, enhances
APC function, and stimulates T cells. Additionally, it
induces IL-18 secretion, activating immune cells within
the tumor microenvironment (TME) [223]. ATP can
activate the purinergic receptor P2X, ligand-gated ion
channel 7 (P2RX7) receptor expressed in macrophages,
DCs, granulocytes, T cells, and B cells, thereby triggering
the NOD-like receptor protein 3 (NLRP3)/apoptosis-
associated speck-like protein containing a CARD
(ASC)/caspase-1 inflammasome and driving the secretion
of IL-13 [224]. P2 receptors in immune cells trigger diverse
responses. For instance, human neutrophils release ATP
from their surface, amplifying chemotactic signals via
the purinergic receptor P2Y, G-protein coupled 2 (P2Y2)
receptor. Neutrophils promptly convert ATP to adenosine,
which, through the A3 adenosine receptor, promotes cell
migration [59, 225]. Additionally, ATP can activate the
P2RX7 receptor on DCs, leading to NLRP3/ASC/caspase-1
inflammasome activation, driving IL-18 secretion, and
inducing polarization of CD8* T cells toward interferon
gamma (IFNy) production, exerting antitumor effects
[224, 226, 227].

Notably, although it has some antitumor effects,
extracellular ATP also exhibits tumorigenic properties.
High ATP concentrations can promote regulatory T cells
(Treg) cell proliferation, leading to immunosuppression.
Extracellular ATP can also enhance the migration of
tumor cells [228]. Additionally, ATP released by activated
platelets induced by tumor cells can open the endothelial
barrier, allowing tumor cells to migrate through the
endothelium and promoting cancer cell extravasation
[229]. Zhang et al. [230] discovered that extracellular
ATP boosts filopodium and pseudopodium formation
in prostate cancer cells by activating birdie triphos-
phatase and increasing metalloproteinase expression. This
enhances cancer cell migration and invasion capacity.
In colon cancer organoids, chemotherapy causes cancer
cell death, leading to ATP release. This ATP binds to
nearby cancer cells via P2x4 receptors, triggering mTOR-
dependent pro-survival mechanisms. This protection
from chemotherapy-induced cell death helps cancer cells
resist treatment and promotes tumor development [230].
Whether increasing extracellular ATP concentrations
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can achieve antitumor immune effects requires further
investigation.

313 | SIP

S1P, produced from sphingosine by SphKs, acts as a “find
me” signal for apoptotic cells but hinders antitumor immu-
nity. It influences lymphocyte function and regulates Tregs
through S1PR1 signaling. S1P deficiency limits peroxisome
proliferator-activated receptor gamma (PPARy) activity,
blocking T-cell differentiation into Tregs [231].

However, S1P is beneficial for cancer therapy in cer-
tain situations. The progression of cancer is influenced by
tumor angiogenesis [232], and S1P and its receptors play
a critical role in this process. In tumor tissues, blood ves-
sels are often irregular and leaky. When S1PR1-5 levels
are increased on the endothelial cell membranes of tumor
blood vessels, S1P signaling helps normalize the vascu-
lature, reducing leakage, and promoting a more normal
blood vessel structure [233]. This normalization enhances
the effectiveness of chemotherapy and immune check-
point inhibitor therapy in shrinking tumors. In contrast,
mice lacking S1PRs have larger tumors and increased
metastasis [234]. This research suggests that S1P plays a
complex role in tumor angiogenesis and progression. We
need to reassess its role in the immune system and find
ways to utilize S1P and its receptors for improved cancer
immunotherapy.

314 | CX3CL1

The role of CX3CL1 in cancer progression is debated. Some
studies have suggested that CX3CL1 inhibits metastasis in
glioma cells, while others have linked high CX3CL1 expres-
sion to reduced survival in oligodendroglioma, astrocy-
toma, and glioblastoma [235, 236]. Lee et al. [237] demon-
strated that CX3CRI signaling enhances tumor-associated
microglia/macrophage functions and angiogenesis, affect-
ing the malignant transformation of low-grade gliomas.
Additionally, CX3CL1 promotes breast cancer via activa-
tion of the epidermal growth factor pathway [238]. In the
M® tumor cell system, IL-10 drives the upregulation of C-C
motif chemokine receptor 2 (CCR2) and CX3CR1, and C-C
motif chemokine ligand 1 (CCL1), colony-stimulating fac-
tor, and macrophage inflammatory protein 1 alpha (MIPlcx)
are needed for the upregulation of CCL2 and CX3CLI. In
vivo, depletion of M® and genetic ablation of CCR2 and
CX3CR1inhibit the growth and metastasis of LLC1 tumors,
induce M® polarization toward the M1 phenotype, sup-
press tumor angiogenesis, and improve survival rates [239].

3.2 | Role of “eat me” signals in tumor
occurrence, development, diagnosis, and
prognosis

321 | CALR

When CALR is exposed on the surface of stressed or dying
tumor cells prior to apoptosis, it facilitates the engulf-
ment of apoptotic cells by professional phagocytes and
DCs, thereby contributing to the initiation of antitumor
immunity [108, 109, 240-243]. Surface exposure of CALR
is crucial for determining the immunogenicity of tumor
cells and nonimmunogenic cell death [243, 244]. Blocking
or depleting CALR using small-interfering RNA (siRNA)
can prevent immunogenic cell death [240]. CALR, along
with endoplasmic reticulum protein 57 (ERp57) [240, 243],
heat shock protein 70 (HSP70), HSP90, and other ER
chaperones exposed on the membrane of cells undergoing
immunogenic cell death (ICD), act as “eat me” signals to
promote the uptake of cell bodies and fragments by APCs
[245]. Macrophages also have CALR on their surface or
release it, making it a crucial player in the recognition
and engulfment of neighboring tumor cells. Activation of
Toll-like receptor (TLR) pathways in macrophages trig-
gers Btk phosphorylation, leading to CALR exposure on
the cell surface [137], thus aiding in the programmed
removal of tumor cells. CALR on the tumor cell surface
forms a bridge complex with LRP1 (also known as CD91)
expressed on phagocytes [108, 110, 111, 246], initiating the
clearance of tumor cells via phagocytes [109, 112, 113]. How-
ever, the phagocytic capacity of macrophages lacking LRP1
is somewhat limited. CALR acts as a bridge for interac-
tion with specific sialylated glycoproteins (modified by
neuraminidases NEU2 and NEU4 and sialyltransferases
ST3GALI1 and ST3GALS6) [247] or exposed PS molecules on
the cell surface [248]. Other proteins that bind to CALR
include thrombospondin 1 [249], complement C1q A chain
[250], and mannose-binding lectin family members [251,
252]. Indeed, tumor cells also express “do not eat me”
signals (such as CD47 and CD24) to evade phagocyto-
sis by APCs [253-255]. CALR signaling counteracts the
CD47-signal regulatory protein alpha (SIRPa) axis and
acts as a prophagocytic signal in CD47 blockade-mediated
phagocytosis.

Cancer cells evade CALR signals via several strategies.
First, cancer cells often have CALR mutations. These
mutations frequently occur in Janus kinase 2 (JAK2)-
unmutated myeloproliferative neoplasms. Common muta-
tions involve exon 9, leading to a 52-bp deletion (CALRY2,
type 1 mutations) or a 5-bp insertion between residues
1,154 and 1,155 (CALRmSS, type 2 mutations), leading to loss
of CALR’s C-terminal KDEL motif [256]. Mutated CALR
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can escape from the ER and interact with polyprenol on
myeloproliferative leukemia protein (MPL) residue N117,
forming a stable complex with MPL and activating the
thrombopoietin receptor (TpoR/MPL) [257-261], thereby
blocking the classic Golgi apparatus-dependent secretion
of the CALR protein [262]. Second, soluble CALR protein
acts as a bait receptor, preventing DCs from engulfing cells
exposed to CALR, thus mediating significant immunosup-
pressive effects [260]. Third, tumor stanniocalcin-1 (STC1)
interacts with CALR, reducing its membrane exposure
[263]. High expression of STC1 induces CALR retention
in mitochondria, minimizing membrane CALR levels and
inhibiting APC phagocytic function [247, 263]. Disrupting
the intracellular STC1-CALR interaction is a challenging
endeavor, and researchers are still in search of compounds
for effective intervention.

3.2.2 | SLAMF7

SLAMF?7 induces cytotoxicity in activated NK cells and
antibody-dependent cell-mediated cytotoxicity (ADCC)
[115, 152]. In most cases, the ADCC effect is primarily
achieved through the binding of antibodies to FcRs, which
activate NK cells and enhance the antitumor response. The
binding of SLAMF7 receptors on NK cells or between NK
cells and target cells to SLAMF?7 ligands can regulate the
PI3K and PLCy1/PLCy2 signaling pathways, induce the
activation of NK cells, promote cytotoxicity, and stimu-
late IFNy production [146, 157, 164, 264]. M1 macrophages
are classically activated macrophages with the ability to
kill tumor cells and inhibit tumor angiogenesis and lym-
phangiogenesis, while M2 macrophages are believed to
contribute to the immunosuppressive TME [265]. Com-
pared to M2 tumor-associated macrophages (TAMs), M1
macrophages show higher expression of SLAMF7 [266].
In the context of SIRPa-CD47 blockade, SLAMF7 has
been demonstrated to play a critical role in macrophage-
mediated phagocytosis of tumor cells [116, 267]. During
SIRPa-CD47 blockade, the SLAMF?7 interaction enhances
tumor cell phagocytosis by macrophages, both in vitro and
in vivo. SLAMF7 acts as an “eat me” signal on APCs,
promoting cancer cell phagocytosis via homodimeric com-
plexes. In hematological malignancies, SLAMF7 expres-
sion influences the response to immunotherapy [116].
Targeting SLAMF?7 surface expression in solid tumors may
mimic hematological malignancies, potentially improving
immunotherapy efficacy [268]. However, He et al. [267]
found that many diffuse large B-cell lymphoma (DLBCL)
cell lines and primary cells lack SLAMF?7 expression, and
CD47-mediated phagocytosis does not depend on SLAMF7
expression in cancer cells. Recently, it was discovered
that soluble SLAMF7 (sSLAMF7) is present in multiple

myeloma (MM) patient serum, but its role in MM biol-
ogy is unclear. Researchers observed that sSSLAMF7 can
bind to surface-expressed SLAMF7, promoting MM cell
growth via the SHP-2 and extracellular signal-regulated
kinase (ERK) signaling pathways [269]. Therefore, there
is currently no definitive conclusion regarding whether
SLAMF7 plays a role as an “eat me” signal in phagocytosis.
Furthermore, other members of the SLAM receptor family,
such as SLAMF3 and SLAMF4, have been identified as “do
not eat me” signal receptors on macrophages, inhibiting
macrophage phagocytosis of hematopoietic tumors [150].

Although it is difficult to elucidate the “eat me” role
of SLAMF7, it can serve as a clinical auxiliary diagnostic
marker and an indicator of disease progression and prog-
nosis. SLAMF7 is highly expressed in almost all MM cells,
is not expressed in the vast majority of solid tumors, and
has extremely low expression in normal immune cells [270,
271], making it a novel biomarker for auxiliary diagnosis of
MM.

323 | Fc

From the perspective of antibody mechanisms of action,
antibodies consist of an antigen-binding fragment (Fab)
and a crystallizable fragment (Fc) [173, 272]. The Fab region
can specifically bind to a particular antigen, determin-
ing the antibody’s specificity and affinity. Similarly, the Fc
region can bind to FcRs (FcyR-I, FcyR-1I, and FcyR-III)
expressed on immune cells and complement protein Clq,
thereby activating immune effector cells to clear foreign
substances. The structure of an antibody determines its
mechanism of action [273-276]. The Fab region attaches
to specific antigens, determining specificity and affinity,
while the Fc region determines the effector functions of
the antibody, including ADCC, antibody-dependent cel-
lular phagocytosis (ADCP), and complement-dependent
cytotoxicity (CDC) [277]. By engineering modifications to
increase the affinity of the antibody’s Fc region for FcyRs
with activating effects, the efficacy of ADCC/ADCP can be
enhanced [278].

In adaptive immune responses, the activation of type I
FcRs on DCs, follicular DCs, and macrophages is crucial.
Bone marrow chimera experiments have shown that DCs
and macrophages make the most significant contributions
to initiating antibody responses [279]. DCs internalize
immune complexes through the type I FcR pathway and
efficiently process and present antigens on both major
histocompatibility complex class I (MHC-I) and class II
(MHC-II) molecules, which is a core process for inducing
adaptive cellular immune responses [280]. When anti-
gens are internalized as immune complexes through the
activation of type I FcRs, the activation of DCs and the
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initiation of immune responses mediated by CD4*t and
CD8* T cells are significantly enhanced [280-282]. 1gG
can activate macrophages via binding of its Fc region
to FcRs on the macrophage surface [279, 283]. Activa-
tion of the FcR signaling pathway forms a “phagocytic
synapse” between tumor cells and phagocytes, and three
events occur sequentially in the phagocytic synapse: con-
tact between tumor cells and phagocytes, macrophage
pseudopod engulfment of tumor cells, and phagocyto-
sis of tumor cells [186]. In various mouse models, it
has been demonstrated that anti-CD20 antibodies require
interaction with activating type I FcRs expressed on mono-
cytes/macrophages to deplete CD20" cells [284, 285]. In
vivo animal models require the activation of FcyRs to
prevent the growth of human epidermal growth factor
receptor 2 (HER2)' tumors [284]. Allelic variants of FcyR-
ITa and FcyR-IIla have also been shown to predict the
efficacy of anti-epidermal growth factor receptor (EGFR)
antibody (cetuximab) therapy in patients with CRC [286].
Therefore, many antitumor antibodies require interaction
with activating type I FcRs on innate effector cells to acti-
vate ADCC and mediate therapeutic effects on malignant
cells.

324 | PS

In the TME, exposed PS can be found on tumor
cells, secreted microvesicles, and tumor endothelial cells.
Phagocytes can distinguish PS exposed on apoptotic cells
from that on viable cells. Importantly, activation of PS
receptors on immune cells, including MDSCs, CD4*1 and
CD8* T cells, DCs, macrophages, B cells, and NK cells,
creates an immunosuppressive environment, which tumor
cells exploit as immune camouflage [200, 287, 288]. In
this intricate ecosystem, cavity-resident macrophages play
a crucial role by upregulating Tim-4, a receptor for PS.
Elevated Tim-4 levels correlate with reduced numbers of
tumor-reactive CD8% T cells in cancer patients’ pleural
effusions and peritoneal ascites. Mechanistically, we dis-
covered that PS levels were elevated in viable CD8* T
cells, making them susceptible to sequestration and pro-
liferation suppression by Tim-4* macrophages. However,
blocking Tim-4 reverses this effect, enhancing the efficacy
of anti-tumor therapies like anti-programmed cell death
protein 1 (PD-1) treatment and adoptive T cell therapy in
murine models [287].

To study the immune changes caused by PS flipping
in tumors, researchers established tumor models with
continuous outward flipping of intracellular PS (CDC50a-
knockout, PSout) or inward flipping of apoptotic tumor
cell PS (Xkr8-knockout, PSin) through CRISPR/Cas9 gene
editing. By using these tumor models, the research team

revealed that flipping intracellular PS to the outer leaflet
of the membrane restricts the expression of MHC-I/II on
TAMs, affecting tumor antigen presentation and promot-
ing tumor development. Conversely, when PS exposed on
the outer membrane of apoptotic cells is flipped to the
inner membrane, it activates cyclic GMP-AMP synthase
(cGAS) to produce cyclic GMP-AMP (cGAMP), subse-
quently activating the type I interferon signaling pathway
in the TME. These immune cells, including TAMs and
NK cells, work together to inhibit tumor growth, thereby
suppressing tumor development [289].

4 | REGULATING “FIND ME” AND “EAT
ME” SIGNALS TO PROMOTE
ANTITUMOR IMMUNITY

In the pursuit of enhancing antitumor immunity, the reg-
ulation of “find me” and “eat me” signals is a pivotal
strategy. We will cover ways to influence “find me” signals,
including LPC reduction, ATP elevation, sphingosine-
1-phosphate (SIP) modulation, and CX3CL1 reduction.
Furthermore, we’ll explore methods to regulate “eat me”
signals, including exposure of CALR on the membrane,
regulation of SLAMF7, enhancement of Fc signaling, and
modulation of PS flipping (Figure 4, Table 4).

4.1 | Strategies to regulate “find me”
signals
411 | Reducing LPC levels

Currently, there are no drugs that directly target LPC.
To reduce LPC levels during cancer therapy, practition-
ers should consider lipid-lowering medications such as
statins, explore drugs targeting lipid metabolism, and
recommend diets containing antioxidants.

4.1.2 | Increasing ATP levels

Although some studies have indicated that extracellular
ATP has clear tumorigenic effects, in most studies, increas-
ing the extracellular ATP concentration was shown to favor
antitumor immunity [224, 228].

Chemotherapy and radiotherapy can trigger ATP
release. Various methods, including Fas crosslinking,
ultraviolet (UV) treatment, and treatment with drugs
such as etoposide, induce the release of nucleotides from
cells such as Jurkat cells, primary thymocytes, MCF-7
cells, and lung epithelial cells [88]. Several agents that
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FIGURE 4 Related drug types and specific examples that regulate “find me” and “eat me” signals to exert anti-tumor immunity. These

categories include chemotherapy, oncolytic peptides, small-molecule drugs, liposomes, shRNAs/siRNAs, antibodies, enzymes,

nanomedicines, radiotherapy, oncolytic viruses, and others. Chemotherapy drugs such as paclitaxel, etoposide, cisplatin, and gemcitabine
inhibit cancer cell growth and division. Oncolytic peptides such as LTX-315 and RT53 selectively target and kill cancer cells. Small-molecule
drugs such as osimertinib, nilotinib, gefitinib, and bortezomib target molecular pathways in cancer cells. Liposomal formulations, including
CAR@aCD47/aPD-L1-SSL, serve as effective drug delivery systems. Nucleic acid-based therapies like Xkr8 shRNA and TI589875 silence genes
involved in cancer progression. Monoclonal antibodies such as elotuzumab, bavituximab, obinutuzumab, and cetuximab activate immune

responses against tumors. Enzyme drugs such as RLH and ADA modulate immune responses and inhibit tumor growth. Nanoparticle-based
therapies like BiTNs and LNP-Rep-(IL-12) deliver drugs specifically to cancer cells. Radiation therapy techniques like SBRT, 3D-CRT, IMRT,
and IGRT precisely target and destroy cancer cells. Abbreviations: 3D-CRT, three-dimensional conformal radiation therapy; ADA, adenosine
deaminase; IGRT, image-guided radiation therapy; IMRT, intensity-modulated radiation therapy; RLH, RIG-I-like helicases; SBRT,

stereotactic body radiation therapy.

induce cell death, such as cadmium, etoposide, mitomycin
C, oxaliplatin, cisplatin, staurosporine, thapsigargin,
mitoxantrone, and doxorubicin, cause dying tumor cells
to release ATP within 8-20 h after exposure in vitro [290,
291].

Another strategy is to increase the extracellular ATP
concentration by inhibiting ATP hydrolysis. In the ATP-
adenosine (ADO) pathway, CD39 is the rate-limiting
enzyme responsible for hydrolyzing ATP into adenosine
diphosphate (ADP) or adenosine monophosphate (AMP),
while CD73 is a 5-nucleotidase that converts AMP into
ADO [306, 307]. Theoretically, CD39 suppresses ATP
hydrolysis, leading to increased ATP levels in the TME,

which promotes inflammation and cell proliferation while
inhibiting the accumulation of ADO, counteracting ADO
receptor-mediated immunosuppression, and preventing
the long-term establishment of an immunosuppressive
TME [308]. Zhang et al. [306] found that B cells release
CD19" extracellular vesicles containing the CD39 and
CD73 enzymes, which convert ATP from chemotherapy-
induced apoptotic tumor cells to ADO. ADO hinders
CD8* T-cell activation, reducing the antitumor impact of
chemotherapy. By using mice lacking the Rab27a gene
in B cells, the authors observed enhanced CD8* T-cell
activation after chemotherapy, resulting in tumor regres-
sion in some cases. However, Klysz et al. [292] indicated
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that knockout of CD39, CD73, or adenosine A2A receptor
(A2AR) had minimal effects on exhausted chimeric anti-
gen receptor (CAR) T cells. Conversely, the overexpression
of adenosine deaminase, which metabolizes ADO into ino-
sine, induced stemness features and significantly bolstered
functionality.

413 | Modulating S1P levels

S1P is highly expressed in cancer cells and can induce T-
cell exhaustion. S1P can also upregulate the transcription
of programmed death-ligand 1 (PD-L1) through E2F tran-
scription factor 1 (E2F1) [309]. The sphingosine kinase 1
(SPHK1) inhibitor PF543 enhances T-cell-mediated cyto-
toxicity [309]. Furthermore, combining PF543 with anti-
PD-1 antibodies in vivo more effectively reduces tumor
burden and metastasis [309]. Janneh et al. [293] reported
that the small-molecule antagonist Ex26-S1P significantly
blocked high-density lipoprotein (HDL)-S1P-mediated B16
cell migration.

414 | Reducing CX3CLl1 levels

Microvascular barrier disruption is important for tumor
cell metastasis. CX3CL1, a vital chemokine in vertebral
bodies, is linked to this process. However, the precise
role of CX3CLl1 in guiding tumor cell migration to ver-
tebral bodies remains uncertain. Yi et al. [310] found
that CX3CL1 disrupts the microvascular endothelial cell
barrier. This process involves stress fiber formation, cell
contraction, damage to zonula occludens-1 (ZO-1) junc-
tions, and increased permeability. The Src/P115 Rho
guanine nucleotide exchange factor (P115-RhoGEF)/Rho-
associated, coiled-coil containing protein kinase (ROCK)
pathway is crucial for CX3CLl-induced barrier disrup-
tion and tumor cell migration across endothelial cells.
Vincristine attracts CX3CR1t monocytes to the sciatic
nerve, causing pain. To reduce chemotherapy-induced
pain, it is crucial to lower CX3CLI1 levels. Old et al. [311]
used CX3CR1 antagonists and CX3CL1 protein inhibitors
targeting ADAM10/17 and/or cathepsin S to achieve this.

4.2 | Strategies to regulate “eat me”
signals

421 | Increasing membrane exposure of
CALR

When tumor cells die in response to external triggers,
they can undergo a shift from nonimmunogenic to ICD.

ICD involves the release of signaling molecules called
damage-associated molecular patterns (DAMPs), which
interact with DC receptors known as pattern recognition
receptors (PRRs). This interaction initiates a chain reac-
tion, activating innate and adaptive immune responses
[312].

CALR becomes exposed on the cell membrane during
ICD stimulation. Based on their mechanisms of action,
ICD inducers can be classified into Type I and Type II
[110]. Type I inducers indirectly trigger ER stress as a
downstream effect. Type I inducers include well-known
anticancer drugs such as anthracyclines (doxorubicin [313]
and mitoxantrone [314]), taxanes (paclitaxel and doc-
etaxel) [315], gemcitabine [316], cyclophosphamide [317],
bortezomib [318], 5-fluorouracil [319], the third-generation
platinum analog oxaliplatin [241], curcumin [320], cardiac
glycosides [321] and the alkylating agent melphalan [322].
Type II inducers directly initiate ER stress, leading to cell
death. Physical treatments such as photodynamic ther-
apy [297] and near-infrared photoimmunotherapy [299,
323] are considered Type II inducers [110, 298, 324].
Both types of inducers initiate ER stress, activating path-
ways via ROS to release DAMPs, which interact with
receptors such as LRP1/CD91, P2RX7/P2RY2, and innate
immune cells (monocytes, neutrophils, macrophages,
DCs) through TLR4 and other PRRs [325]. Several new
therapies also induce ICD in tumor cells to promote
antitumor immune responses. Studies have shown that
oncolytic peptides such as LTX-315 [326] and RT53 [327]
can induce ICD in tumor cells, leading to the release
of a large number of DAMPs. DAMPs act as tumor
vaccines, and nanoparticles (NPs) inhibit tumor growth
by releasing DAMPs. Hyaluronic acid-conjugated poly-
dopamine nanoparticles (HyPO) nanoparticles induce cell
death in tumors. In a metastatic breast cancer model,
HyPO nanoparticle therapy enhanced antitumor immu-
nity, disrupted tumors and suppressed metastases [328].
Additionally, novel therapies that induce ICD in tumor
cells include retinoic acid-inducible gene (RIG)-I-like heli-
cases [299], oncolytic viruses (Ovs) [328], non-thermal
plasma [301], and nanopulse stimulation [302].

Furthermore, the potency of CALR as an “eat me” signal
can be strengthened through a strategy that restores CALR
exposure. The pathways for the restoration of CALR expo-
sure can be activated by eliminating or blocking inhibitory
molecules (such as B7-H4 [139], PERK [329-331], ST3GALI1
[332], ST6GALL [262], and STC1 [262]), competitively
disrupting inhibitory interactions (for example, between
V-Set domain containing T Cell activation inhibitor 1
(VTCN1) and elF2« or between CALR and STC1), provid-
ing favorable stress signals for CALR exposure, or using
genetic engineering to create CALR variants that avoid
STC1 retention and bind to the cell surface [262].
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422 | Regulating SLAMF7

Elotuzumab (Elo) is an IgG1 antibody targeting SLAMF7.
SLAMF?7 is expressed on tumor cells in 95% of multi-
ple myeloma (MM) patients [271, 333]. Elo can activate
NK cells through SLAMF7, inducing an FcyR-III-mediated
ADCC antitumor immune response [186, 334]. Addition-
ally, it participates in FcyR activation in TAMs to pro-
mote ADCP for tumor clearance [277]. Elo has shown
effective responses in in vitro and in vivo preclinical
studies of MM and has improved progression-free sur-
vival (PFS) in relapsed/refractory MM patients when used
in combination with lenalidomide and dexamethasone
[270].

Gogishvili et al. [303] utilized the huLuc63 antibody
(Elo) to induce the expression of chimeric antigen recep-
tors (CARs) on T cells to redirect their specificity to
SLAMF?7. They demonstrated that SLAMF7-CAR T cells
from patients or donors showed antimyeloma effects.
SLAMF7-CAR T cells selectively killed normal lympho-
cytes with high expression of SLAMF7. Through SLAMF7-
CAR modification, both CD8*" and CD4* T cells rapidly
acquired and maintained the SLAMF?7 phenotype. Impor-
tantly, the cytotoxicity induced by SLAMF7-CAR T cells
preserved a fraction of cells in each cell population with
a SLAMF7-/1°% phenotype, thus protecting functional
lymphocytes, including virus-specific T cells.

Furthermore, some studies have suggested that high
expression of SLAMF7 enhances the phagocytic activ-
ity of macrophages. Lu et al. [268] created a ver-
satile nanobiologic platform called bispecific tumour-
transforming nanoparticles (BiTNs), which were used for
the treatment of HER2-expressing breast cancer. These
nanoparticles combine anti-HER2 antibodies with recom-
binant SLAMF7, which is present on both cancer cells
and phagocytes. In solid tumors, these BiTNs induce
macrophage phagocytosis by targeting cells express-
ing SLAMF7 and blocking CDA47 effectively. The study
showed that SLAMF7-overexpressing cancer cells exhib-
ited enhanced phagocytosis by macrophages upon CD47
blockade. Targeting HER2"" breast cancer cells to con-
vert them to the SLAMF7"€" phenotype was crucial for
initiating macrophage phagocytosis.

4.2.3 | Enhancing Fc signaling

The Fc region of IgG interacts with FcyRs on the surface of
macrophages, providing an “eat me” signal that promotes
macrophage anticancer activity. The main strategies for
modifying the Fc fragment include Fc site-specific muta-
genesis [335], glycosylation [173], and Fc multimerization
[336].

Site-specific Fc mutagenesis boosts ADCC and ADCP.
For example, single mutations such as I332E or dou-
ble mutations such as S239D in trastuzumab’s Fc region
enhance the affinity of FcyR-I11a-V158 by 10-fold and 100-
fold, respectively [337]. Adding the A330L mutation to the
double mutant increases effector FcyR-IIla affinity while
reducing inhibitory FcyR-IIb, resulting in 100- to 1000-fold
ADCC enhancement [173].

Glycosylation of IgG Fc can alter its affinity for FcyRs,
thereby regulating inflammatory responses and tumor
cytotoxicity [173]. Changes in N-linked glycan modifica-
tion of IgG influence its interaction with FcRs. Removing
core fucose greatly enhances ADCC, boosting binding
to FcyR-IIIa by 50-fold. Terminal sialic acid triggers
inhibitory FcyR-IIb, giving antibodies anti-inflammatory
properties. However, the sialylation of Fc reduces antibody
binding to complement Clq, weakening CDC and making
antibodies anti-inflammatory [273-276].

4.2.4 | Regulating PS flipping

The flipping of PS provides a target for tumor treatment.
Inactivation of the PS-promoting flippase Xkr8 in combi-
nation with an anti-PD-1 strategy allows complete tumor
elimination in mice [289]. Although there are currently
no small-molecule drugs targeting Xkr8, Wang et al. [289]
used lentiviral particles to knock down Xkr8 in tumors
using shRNA. Chen et al. [305] used modified nanopar-
ticles to target tumors without affecting healthy tissues.
These nanoparticles, called PMBOP-CPs, carried siXkr8
and FuOXP and were tested in mouse models of colon and
pancreatic cancers. The combination of siXkr8 and FuOXP
significantly improved the TME and enhanced antitumor
activity.

4.2.5 | Blocking “do not eat me” signals
Blocking the “do not eat me” signal serves to enhance
the “eat me” signal, as it prevents the inhibition of the
latter, thus amplifying its overall effectiveness within the
signaling mechanism.

Almost all types of tumors have mechanisms to pre-
vent phagocytes from engulfing them by expressing “do
not eat me” signaling proteins on the surface of tumor cells
[338]. In the late 2000s, the crosstalk between CD47 and
SIRPa was recognized as the first checkpoint associated
with tumor phagocytosis [21, 22, 339-341]. The PD-1/PD-L1
axis [23], MHC-I/leukocyte immunoglobulin-like recep-
tor subfamily B member 1 (LILRBI) axis [342-344], and
CD24/sialic acid-binding immunoglobulin-type lectin 10
(Siglec-10) axis [345] were successively discovered between
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2017 and 2019. Subsequently, a range of monoclonal anti-
bodies or fusion proteins targeting these four distinct
macrophage phagocytosis-related checkpoints were devel-
oped [346].

CD47-SIRPa-directed therapy is currently being
explored in multiple clinical trials in various tumor types.
In numerous hematologic malignancies as well as solid
tumors, there is a notable increase in the expression of
CD47 [341, 347], with a significant positive correlation
observed between high levels of CD47 expression and
poor cancer prognosis [348-350]. Hence, inhibiting the
CD47/SIRPa interaction could represent a promising
strategy for cancer immunotherapy, either independently
or in combination with other tumor-targeted therapies
[351]. CD47-SIRPa-directed therapy is being investi-
gated in clinical trials across multiple tumor types [352].
Magrolimab (Hu5F9-G4), an anti-CD47 monoclonal anti-
body, is under investigation alone or combined with other
drugs [353, 354]. Trials in lymphoma patients showed that
magrolimab combined with rituximab achieved overall
response rates (ORRs) of 40% and 71% (NCT02953509)
[353]. In CRC, treatment with magrolimab combined with
cetuximab had a 6.7% ORR (NCT02953782). The use of
magrolimab combined with avelumab for the treatment of
ovarian cancer resulted in stable disease in 56% of patients
(NCT03558139). CC-90002 is tested with rituximab for
advanced cancers (NCT02367196). CC-95251, combined
with rituximab, achieved a 41% ORR in non-Hodgkin
lymphoma (NCT03783403) [355]. Recent studies have
identified a novel regulator of ADCP in cancer cells and
macrophages through genome-wide screening: adipocyte
plasma membrane-associated protein (APMAP) [356].
Loss of APMAP expression, when combined with CD47
blockade monoclonal antibodies, enhances phagocytosis
and suppresses tumor growth [356].

PD-1is expressed in both murine and human TAMs, and
its expression levels are correlated with cancer progression
and advanced TNM stage [23, 357]. PD-17 TAMs exhibit
a phenotype resembling that of M2-like macrophages
and demonstrate reduced phagocytic capacity toward can-
cer cells [358, 359]. The expression of PD-1 inhibits the
function of various immune cells in the TME, includ-
ing T cells [360], B cells [361], NK cells [362], and DCs
[363]. Research on antibody-mediated blockade of the PD-
1/PD-L1 axis has been reported in various cancer models,
including melanoma [364], non-small cell lung cancer
(NSCLC) [365], and renal cell carcinoma [366, 367]. The
PD-1inhibitor pembrolizumab (Keytruda) has received the
US Food and Drug Administration (FDA) approval for
the treatment of various cancers, including melanoma,
lung cancer, head and neck cancer, Hodgkin lymphoma,
urothelial carcinoma, gastric cancer, cervical cancer, pri-
mary mediastinal large B-cell lymphoma, and solid tumors

with high microsatellite instability. The PD-L1-targeting
antibody atezolizumab (Tecentriq) has demonstrated sig-
nificant anti-tumor efficacy in preclinical research and
clinical trials and received the US FDA approval for mar-
keting in May 2016 [368, 369]. Data from a phase III
clinical trial targeting PD-L1* NSCLC patients suggest
that pembrolizumab, a PD-1 antibody, demonstrates more
significant efficacy compared to platinum-based dou-
blet chemotherapy [370]. PD-1/PD-L1 inhibitors, including
nivolumab, pembrolizumab, and camrelizumab, have also
been applied clinically for the treatment of melanoma,
NSCLC, renal cancer, Hodgkin lymphoma, and other
diseases [7].

LILRB1 and LILRB2 are considered candidate regu-
lators of MHC-I-mediated phagocytic suppression. The
MHC-I/LILRBLI signaling axis represents a “do not eat
me” signaling pathway, where inhibition of LILRB1 or
MHC-I could significantly enhance the phagocytic activity
against tumor cells [8, 9, 24]. LILRB1 monoclonal antibody
enhances the anti-tumor activity of NK cells in multi-
ple myeloma, leukemia, and lymphoma [10]. However, it
remains unclear whether blocking LILRB2 would directly
or indirectly promote the phagocytic activity of TAMs. In a
previous study by Chen et al. [344], therapeutic antibody
blockade of LILRB2 was shown to promote macrophage
maturation and enhance their pro-inflammatory pheno-
type. Anti-LILRB2 monoclonal antibodies are currently
under investigation in phase I clinical trials for malignant
tumors (JTX-8064, INNATE).

CD24 constitutes a “do not eat me” signal and is defined
as an immune checkpoint by its interaction with the
inhibitory receptor Siglec-10 on macrophages within the
TME [11, 12]. Accordingly, CD24 blockade using a mono-
clonal antibody induced macrophage-mediated phagocy-
tosis of breast, ovarian, and pancreatic cancer cell lines in
vitro and inhibited tumor growth of breast cancer MCF-7
cell xenograft in a non-obese diabetic (NOD)-scid IL2ry"ull
(NSG) mouse model.

Precisely modulating the functions of phagocytes,
including the regulation of “find me,” “eat me,” and
“do not eat me” signals, is pivotal in tumor immunol-
ogy. However, the augmentation of phagocyte populations
does not consistently enhance tumor immunity. In cer-
tain contexts, specific subsets of macrophages may elicit
immune suppression, particularly in response to tumor
antigens. For instance, in murine models with liver metas-
tases, the expansion of hepatic CD11b*F4/80" myeloid
cells characterized by heightened expression of colony-
stimulating factor 1 receptor (CSF-1R) has been associated
with resistance to immunotherapy [13]. Yu et al. [288]
demonstrated that targeted depletion of these myeloid
cells using low-dose clodronate liposomes and anti-CSF-
1 monoclonal antibody effectively mitigated intrahepatic

95U8017 SUOLIIOD BA 8. 3|qeol(dde au Aq peusanob afe saoile O 8Sh JO'Se|n Joj Aeiq i 8uljuO /8|1 UO (SUORIPUOD-pUe-SWB)W0D A8 |imArelq 1 pul|Uo//:SdnL) SUORIPUOD PUe SWs | 8y} 88S *[¢202/TT/20] Uo Akldiaul|uo A8|IM ‘6252T 29e9/200T OT/I0p/w0d A8 | ARelq1jeuljuo//Sdiy Wiy papeojumod ‘2 ‘%202 ‘8rSEEese



XIAO ET AL.

ANCER o1
COMMUNICATIONS

antigen-specific T cell apoptosis, highlighting a potential
strategy to overcome immunotherapy resistance.

5 | CONCLUSIONS

The “find me” and “eat me” signals can directly and indi-
rectly alter the behavior of phagocytes, suggesting signifi-
cant implications for tumor immunotherapy. Researchers
have identified various “find me” and “eat me” signals pro-
duced by tumor cells, such as PS and CALR. These signals
can induce phagocytes in the immune system to recognize,
locate, and engulf tumor cells, thereby promoting tumor
clearance. However, it is intriguing that not all upregula-
tion of “find me” and “eat me” signals benefits anti-tumor
immunity. For instance, the upregulation of signals like
LPC and CX3CL1 can accelerate tumor progression, but
the underlying mechanisms remain unclear. Therefore,
the effects of “eat me” and “do not eat me” signals
in anti-tumor immunity should be considered dialecti-
cally. Exploring the mechanisms and molecules associated
with these signals could pave the way for improving
cancer treatment. Combining phagocytic signals target-
ing cancer with other interventions, such as oncolytic
viruses, CAR-T cells, exosomes, and nanoparticles, can
potentially enhance anti-tumor immune responses more
effectively.
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