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1 | BACKGROUND

Immunotherapy, specifically immune checkpoint

inhibitors (ICIs), offers a new paradigm for treating
several solid tumors, including melanoma [1, 2], non-
small cell lung cancer (NSCLC) [3, 4], and head and
neck squamous cell carcinoma (HNSCC) [5]. However,
most patients with cancer do not respond optimally to
immunotherapy alone [6, 7]. Accordingly, combining
immunotherapy with other established cancer treatments,
including radiotherapy (RT), has garnered considerable
attention [8-12].

RT, a widely used and efficacious cancer treatment
modality, can enhance both localized and systemic anti-
tumor immune responses [13, 14]. RT has evolved consid-
erably over time, driven by advancements in diagnostic
imaging and delivery techniques. A pivotal leap occurred
in the development of electron linacs in the 1960s and the
1970s. The evolution of RT techniques, including intensity-
modulated RT, stereotactic body RT (SBRT), image-guided
RT, and proton therapy, has ushered in a new era of preci-
sion radiation for solid tumors, with lower toxicities and
higher conformality of the radiation fields targeting the
tumor [14-18].

The concept of radioimmunotherapy was first proposed
in 2005, triggering many preclinical studies that explored
the potential synergy between RT and immunotherapy
[19]. However, evidence from relevant clinical trials is
limited. In 2016, Bernstein et al. [20] introduced the defini-
tive concept of immunotherapy and stereotactic ablative
RT (ISABR). In 2018, they further advocated comprehen-
sive irradiation of multiple lesions in the ISABR field [21]
(Figure 1).

First, a secondary analysis of the KEYNOTE-001 trial
(NCT01295827) provided intriguing insights into this com-

analysis of the combination of immunotherapy and RT. We summarized the
preclinical mechanisms through which RT boosts antitumor immune responses
and mainly focused on the outcomes of recently updated clinical trials, including
those that may not have met expectations. We investigated the optimization of
the therapeutic potential of this combined strategy, including key challenges,
such as fractionation and scheduling, lymph node irradiation, and toxicity.
Finally, we offered insights into the prospects and challenges associated with the
clinical translation of this combination therapy, providing a realistic perspective
on the current state of research and potential future directions.

immunotherapy, radiotherapy, immune checkpoint inhibitor, abscopal effect, tumor microen-

bination strategy at the clinical trial level. The primary
objective of the phase I KEYNOTE-001 trial was to assess
the safety and antitumor activity of pembrolizumab (an
anti-programmed cell death protein 1 [anti-PD-1] anti-
body) in patients with advanced NSCLC [22]. Shaverdian
et al. [23] assessed patients with advanced NSCLC who
had received RT before pembrolizumab treatment. They
found that the overall survival (OS) and progression-free
survival (PFS) were significantly longer in patients who
had previously received RT than in those who had not,
with an acceptable safety profile. This benefit was observed
despite the significant interval of 9.5 months between
RT and pembrolizumab treatment. Another major mile-
stone occurred when Antonia et al. [24] found that in
the PACIFIC trial, patients who started durvalumab (anti-
programmed death-ligand 1 [anti-PD-L1] antibody) within
2 weeks after completing chemo-RT (CRT) survived longer
than those who started durvalumab at 4 weeks. The
PACIFIC trial, a randomized phase III trial (NCT02125461),
enrolled patients with stage III unresectable NSCLC who
received at least 2 cycles of platinum-based CRT. These
patients were then assigned to receive durvalumab or
placebo. This trial demonstrated improved OS and PFS
in patients with NSCLC receiving durvalumab post-CRT
[24, 25]. The latest analyses demonstrated robust and
sustained OS and durable PFS benefits [26]. PACIFIC-R
(NCT03798535) is a large, real-world, retrospective study of
patients who received the PACIFIC regimen. Better real-
world PFS outcomes were also observed among patients
who received durvalumab closer to the end of RT, which
is consistent with the findings from the PACIFIC trial
[27]. These findings provide compelling evidence support-
ing the potential of RT to elicit a systemic antitumor
immune response, inducing an abscopal effect. However,
certain factors, including PD-1/PD-L1, impede RT-induced
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FIGURE 1 Timeline depicting important events in the

development of the combination of RT and immunotherapy.
Abbreviations: ICI, immune checkpoint inhibitor; IMRT,
intensity-modulated radiotherapy; ISABR, immunotherapy and
stereotactic ablative RT; NSCLC, non-small cell lung cancer; RT,
radiotherapy.

abscopal effects, highlighting the role of ICIs in enhancing
the efficacy of RT.

The purpose of this review is to provide a compre-
hensive and balanced examination of the combination of
RT and immunotherapy in cancer treatment. We aim to
present an overview of the numerous clinical trials, such
as the SPRINT, DOLPHIN, PEMBRO-RT, and MDACC tri-
als, which have released their findings in the past five
years. Our goal is to shed light on the successes and set-
backs of these trials, highlighting the need for a nuanced
understanding of this combination therapy. In addition
to summarizing the preclinical mechanisms that enhance
antitumor immune responses through RT, our objective
extends to exploring the potential optimization of this com-
bined strategy, including challenges such as fractionation
and scheduling, lymph node irradiation, and toxicity man-
agement. Ultimately, this review seeks to provide insights
into the potential and hurdles of translating this combi-
nation therapy into clinical practice, offering a realistic
view of the current state of research and possible future
directions.

2 | MECHANISMS AND PRECLINICAL
EVIDENCE

Several reviews have discussed the preclinical mechanisms
of synergy between RT and immunotherapy [28-30]. In
this section, we present an updated summary of recent pre-
clinical studies on the impact of RT on the immune system
via in situ vaccination and immune reprogramming.

2.1 | Insituvaccination

The immune mechanisms triggered by RT encompass
three essential processes: immunogenic cell death and
arousal of antigen-presenting cells, T cell priming in lymph
nodes, and effector T cells homing to tumors [31, 32]
(Figure 2). RT-damaged tumor cells release various tumor-
associated antigens and damage-associated molecular pat-
terns (DAMPs), including high-mobility group box 1 [33,
34] and adenosine triphosphate [35, 36]. Increased DAMPs
activate dendritic cells (DCs) and trigger the MyD88 path-
way, inducing a cascade of cytokines, including tumor
necrosis factor-a (TNF-«), interleukin-1 (IL-1), IL-6, and
IL-8 [37, 38]. Furthermore, RT enhances the expression
of calreticulin on the cell surface, acting as an “eat me”
signal [39-41], and upregulates the expression of major
histocompatibility complex (MHC) class I on tumor cells
[42, 43]. RT enhances antigen cross-presentation within
draining lymph nodes (DLNs) [43, 44]. During this pro-
cess, activated DCs migrate to DLNs, where they present
antigens to T cells [45]. After education, T cells, mainly
CD8™* T cells, leave the DLNs and circulate throughout the
body, patrol for tumor antigens, and target both irradiated
and non-irradiated tumor deposits, thereby promoting the
regression of distant tumors, an intriguing phenomenon
known as the abscopal response [46-49].

Cellular responses after RT are intricate and multi-
faceted, involving various signaling pathways that affect
immune system function. There is a recurring consen-
sus that non-tumor cell stimulator of interferon genes
(STING) is a crucial factor [50, 51] (Figure 3). Radiation-
generated cytoplasmic double-stranded DNA fragments
trigger cyclic GMP-AMP (cGAMP) synthase activation,
leading to the synthesis of the secondary messenger
cGAMP [52]. This, in turn, recruits TANK-binding kinase
1 and IxB kinase [53, 54], initiating the transcription of
inflammatory cytokines, especially interferon-§ (IFN-83)
[50, 55]. Notably, Vanpouille-Box et al. [56] showed that RT
ranging from 12 Gy to 18 Gy activates three prime repair
exonuclease 1 (TREX1) within tumor cells, thereby orches-
trating the degradation of radiation-induced cytoplasmic
double-stranded DNA.

2.2 | Immune reprogramming

RT also induces immune reprogramming by dynamically
altering the immune milieu in response to treatment [57].
This causes the release of chemokines, including C-X-
C motif chemokine ligand 9 (CXCL9) [58], CXCLI1O [58,
59], and CXCL16 [60, 61], leading to the infiltration and
accumulation of immune cells and reprogramming of the
tumor microenvironment (TME) [62-64]. DCs [46], CD8*
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In-situ vaccination induced by RT. In-situ vaccination induced by RT encompasses three key procedures: exposure of tumor

antigen and activation of APCs, T cell priming in lymph nodes, and effector T cells home to tumors. Abbreviations: APCs, antigen-presenting
cells; DAMP, damage-associated molecular pattern molecules; DCs, dendritic cells; HMGB-1, high-mobility group box 1; IFN-g, interferon-g;

MHC, major histocompatibility complex; RT, radiotherapy; STING, stimulator of interferon genes; TNF-a, tumor necrosis factor-c;.

T cells [65], natural killer (NK) cells [66], as well as regula-
tory T cells (Tregs) [67, 68] and myeloid-derived suppressor
cells (MDSCs) [69], are involved in this process (Figure 4).

Immune cells exhibit differential sensitivities to radia-
tion. For instance, immature DCs can tolerate radiation
doses of 10 Gy to 30 Gy, while retaining their viability and
functionality. However, mature DCs, which are crucial for
immune activation, may be more radiation-sensitive [70].
Tregs are more resistant to RT than other lymphocytes [71,
72]. Recently, irradiated DCs were found to decrease the
secretion of IL-12 and IL-23 cytokines, a reduction, in turn,
mitigated by irradiated fibroblasts [73].

Significant CD4* T helper 1 and CD8" T cytotoxic
1 polarization was observed in tumor DLNs after RT
[74]. To delve deeper into the underlying potentiation of
RT and ICIs, Rudqyvist et al. [75] identified the separate
contributions of each therapy (RT and anti-cytotoxic T-
lymphocyte-associated antigen 4 [anti-CTLA-4] antibody)
to the T cell population. They found that the anti-CTLA-
4 antibody expanded CD4" T helper 1 cells and RT
expanded exhausted CD8' T cells. However, in the com-
bination group, Tregs were reduced while CD8 effector

memory, early activation, and precursor exhausted T cells
were expanded compared to those in the control and
monotherapy groups.

NK cells are cytotoxic innate lymphoid cells essential for
the innate immunosurveillance of tumors [76, 77]. NK cells
were activated by irradiated tumor cells and could regulate
the response to RT and CTLA-4 blockade [66, 78]. Com-
bining RT with the adoptive transfer of NX cells has been
shown to prolong survival compared with that of RT alone
[79].

Tumor-associated macrophages (TAMs) are the most
abundant tumor-infiltrating lymphocytes in the TME
[80-83]. TAMs are phenotypically and functionally
diverse and can be broadly divided into two types: pro-
inflammatory M1 and anti-inflammatory M2 macrophages
[84-87]. RT can shift macrophage differentiation to the
M1 phenotype, indirectly increasing tumor infiltrating
lymphocytes (TIL) frequency [88, 89]. Moreover, depletion
of TAMs can reverse immunosuppression and promote
RT efficacy [90].

Tregs, characterized by high forkhead box protein
P3 (Foxp3) and CD25 expression, inhibit antitumor
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The mechanism of radiation-induced activation of the cGAS-STING pathway. Radiation-generated cytoplasmic dsDNA

fragments trigger cGAS activation. Then, cGAS dimerizes and synthesizes the dinucleotide secondary messenger cGAMP, which binds to the
STING at the ER. STING oligomerize and translocate to the Golgi, which involves in COP complexes. In the ER-Golgi intermediate
compartment, STING recruits TBK1 and IKK. Together with STING, TBK1 is allowed to co-activate the IRF3 by phosphorylation. The
phosphorylated IRF3 polymerizes and translocate to the nucleus to induce the expression of IFN-3, which are crucial for therapeutic
responses to RT in immune cells. In addition, IKK activates NF-kB pathway and subsequently promotes transcription of inflammatory
cytokines IL-6, IFN-3, TNF-«, and IL-13. Abbreviations: IFN-g, interferon-3; RT, radiotherapy; STING, stimulator of interferon genes; TNF-«,

tumor necrosis factor-a; TREX1, three prime repair exonuclease 1.

immunity, thereby promoting tumor development [91-93].
Different doses of RT can increase the expression of
CTLA-4 on Tregs as well as the level of transforming
growth factor-f (TGF-f) secreted by Tregs [94]. Moreover,
in a murine model of HNSCC, RT upregulated C-C motif
chemokine 2 (CCL2) chemokine production in tumor
cells, resulting in the C-C chemokine receptor type 2
(CCR2)-dependent accumulation of CCR2t Tregs. This
reduces the efficacy of RT [95]. Treg depletion combined
with RT can significantly enhance immune-promoting

effects, as well as reduce tumor burden and improve
0S [44, 96, 97].

MDSCs are a cluster of cells with immunosuppressive
effects that are classified into 2 distinct subsets: polymor-
phonuclear and monocytic MDSCs [98-100]. RT induces
MDSC expansion and recruitment in murine models and
humans [69]. Interestingly, a transient significant increase
in the percentage of MDSCs was observed 3 days after
RT, which then decreased at day 14 after RT [101]. The
upregulation of CCL2, CCL7, and CCLI2 after high-dose
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FIGURE 4 RT reprogrammed the tumor microenvironment. RT induces the upregulation of MHC class I and NK2GD, thereby

promoting a potent cytotoxic response from CD8* T cells and NK cells. RT on DCs increases the expression of CCL19 and CCL21 and mediate
migration of DCs. RT induced macrophage differentiation into M2 phenotype. RT increased Tregs through release of adenosine by tumor cells
as well IL-10. Moreover, RT recruited MDSCs via the CCR2 pathway. Abbreviations: CCL, C-C motif chemokine; CCR, C-C chemokine
receptor type; DC, dendritic cell; IFN-g, interferon-3; MDSC, myeloid-derived suppressor cell; MHC, major histocompatibility complex; NK
cell, natural killer cell; RT, radiotherapy; TAM, tumor-associated macrophage; TGF-S, transforming growth factor-g; Treg, regulatory T cell.

radiation (20 Gy) led to the accumulation of CCR2T MDSC
in the TME [102]. The CCR2 blockade abrogates RT-
induced MDSCs [102, 103]. A recent study found that
RT-induced YT521B homology domain family 2 (YTHDF2)
expression and YTHDEF?2 deficiency reversed the accumu-
lation of MDSC following local RT, improving the effects
of combined RT and/or anti-PD-L1 treatment [104].

In summary, while RT-recruited immunosuppres-
sive cells can potentially hinder immune-stimulatory
responses, it has been observed that RT can ultimately
increase the effector-to-suppressor cell ratio in the TME
[33]. This, combined with the upregulation of PD-L1
expression induced by RT, suggests that combining RT

with ICIs could be a promising strategy for treating solid
tumors [105-108] (Table 1).

3 | EVIDENCE FROM CLINICAL TRIALS

Previous case reports and limited clinical trials have
demonstrated promising results when combining RT with
immunotherapy [109-112]. Despite the recent disclosure
of the results of several clinical trials, the future of this
field remains uncertain. SBRT, also known as SABR, is the
most commonly used treatment in clinical trials [113]. In
this section, we discussed the results of clinical trials and
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findings revealed over the past five years, focusing primar-
ily on NSCLC, where the most promising results have been
observed. We also summarized the relevant clinical trials
combining RT with ICIs, with a predominant emphasis
on NSCLC (Table 2) and other solid tumors (Table 3).

3.1 | Early-stage NSCLC

The RTOG 0236 trial showed that SBRT achieved a high
rate of tumor control in patients with medically inopera-
ble early-stage NSCLC [114]. These patients are typically
treated with definitive SBRT as the standard of care [115].
However, a longer follow-up period revealed additional
cancer recurrences [116, 117]. Preclinical evidence suggests
that ICIs combined with SBRT may facilitate preoper-
ative immunotherapy without compromising antitumor
efficacy, making it a safer option for neoadjuvant therapy
[118].

An open-label phase II trial (NCT02904954) compared
durvalumab alone with durvalumab plus SBRT (3 x 8 Gy)
for early-stage NSCLC [119]. Major pathological response
(MPR) rates were significantly higher in the durvalumab
plus SBRT group (16/30 patients) than in the durvalumab
alone group (2/30 patients). Notably, half of the patients
in the dual therapy group with MPR showed complete
pathological response [119].

A recent open-label phase II trial (NCT03110978) eval-
uated the efficacy and safety of SBRT alone and in
combination with nivolumab for early-stage NSCLC. Com-
pared with that of the SBRT group, the combination
therapy group showed significantly improved four-year
event-free survival with tolerable toxicity [120]. ISABR
(NCTO03148327), a multicenter prospective clinical trial,
recently reported the safety and efficacy of the combina-
tion of SBRT and durvalumab in 18 patients [121]. These
results suggest that pulmonary toxicity risk is the greatest
concern for combination therapy [121].

3.2 | Oligometastases

The concept of an oligometastatic state was first postu-
lated in 1995 [122]. This hypothesis posits that metastases
may be limited to specific organs in limited numbers
[123], implying potential curability with localized inter-
ventions, including RT or surgery [124]. Earlier evidence
supports the safety and efficacy of SBRT for oligometas-
tases [125]. In limited metastatic NSCLC, SBRT before
maintenance chemotherapy significantly improved PFS
compared with maintenance chemotherapy alone [126].
The SABR-COMET phase II trial showed that SBRT
improved OS [127].

Harnessing the innate and adaptive immunity is vital
for restricting metastatic development [128-130]. Pitroda
et al. [131] identified that the upregulation of immune-
related genes in colorectal liver metastases was associated
with better clinical outcomes. Accordingly, the integra-
tion of immunotherapy with SBRT has been proposed
for oligometastases [132] (Table 4). Luke et al. [133] con-
ducted a phase I trial and found that pembrolizumab and
SBRT combination therapy had an acceptable safety pro-
file. A subsequent clinical study (NCT02316002) showed
improved PFS with reduced quality of life after SBRT for
oligometastatic NSCLC [134].

The results from a randomized phase II trial have
established the use of SBRT to all lesions, becoming the
standard of care for patients with oligometastatic NSCLC
[135]. A multicenter prospective observational study aimed
to determine whether concomitant anti-PD-1 and SABR
could enhance tumor response in metastatic NSCLC and
melanoma. In this study, all patients received concurrent
pembrolizumab or nivolumab and SABR to 1 to 5 lesions,
with the anti-PD-1 treatment continuing until further
progression, unacceptable toxicity, or a medical/patient
decision to discontinue. The objective response rate (ORR)
was 42%, and the median PFS was 14.2 months [136]. This
approach achieved high response rates and extended the
clinical benefits of immunotherapy by delaying further
progression and developing a new systemic therapy.

3.3 | Locally advanced (LA)-NSCLC
Approximately one-third of patients with NSCLC are ini-
tially diagnosed with LA disease [137]. Based on the finding
of the PACIFIC trial [24, 25], concurrent CRT (cCRT) fol-
lowed by consolidation durvalumab (the PACIFIC regime)
became the standard of care for patients with LA-NSCLC.
With updated suboptimal 5-year OS and PFS rates [26],
novel treatment strategies are under investigation to
improve clinical outcomes. One such approach was the
GEMSTONE-301 phase III trial (NCT03728556) [138] and
the PACIFIC-6 phase II trial (NCT03693300) [139]. Both tri-
als demonstrated that ICI after sequential CRT (sCRT) is
an effective consolidation therapy for LA-NSCLC, suggest-
ing that sCRT followed by ICI could be an alternative for
patients unsuitable for the PACIFIC regimen [140].

Trials exploring the use of ICIs concurrently with cCRT
or sCRT have also been conducted. KEYNOTE-799 is a
nonrandomized phase II trial of pembrolizumab concur-
rent with cCRT as the initial therapy for the treatment of
LA-NSCLC, with an ORR of 70.5% [141]. The PACIFIC-2
trial (NCT03519971) randomized patients to receive durval-
umab or a placebo concurrently with CRT. On November
14, 2023, the news that durvalumab administered
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TABLE 4 Clinical trials about the combination of RT and immunotherapy in oligometastatic.

RT (dose and Timing and
Condition NCT number  Status Phase Immunotherapy fractionation) sequencing
Melanoma NCT01565837 Unknown PhaseII  Ipilimumab SBRT (N/A) Immunotherapy prior
to RT
Melanoma NCTO01416831 Active, not Phase IT IL-2 SBRT (N/A) Concurrent
recruiting
Melanoma NCT02107755 Unknown Phase IT Ipilimumab SBRT (N/A) SBRT starts 5 weeks
after first dose of
ipilimumab
Solid tumors NCT05259319 Not Phase I Atezolizumab and SBRT (24 Gy in 3 Sequential
recruiting tiragolumab fractions)
NSCLC NCT03275597 Terminated Phase I Durvalumab and SBRT (N/A) RT prior to
tremelimumab immunotherapy
NSCLC NCT03965468 Active, not PhaseII  Durvalumab SBRT (N/A) Concurrent
recruiting
NSCLC NCT04549428 Recruiting PhaseII  Atezolizumab RT (a single fraction of ~Concurrent
8Gy)
NSCLC NCT04238169 Recruiting PhaseII  Toripalimab SBRT (N/A) Concurrent

Abbreviations: IL-2, interleukin-2; N/A, not applicable; NSCLC, non-small cell lung cancer; RT, radiation therapy; SBRT, stereotactic body radiation therapy.

concurrently with CRT failed to achieve statistical signif-
icance for PFS compared with CRT alone was announced
[142]. The failure of the PACIFIC-2 trial could be attributed
to several factors, including the toxicity caused by imma-
ture treatment regime. Thus, the optimal regime of RT
still requires further exploration and research.

Furthermore, the induction of ICIs before CRT in
patients with LA-NSCLC is currently being explored
in clinical trials. The prospective AFT-16 study
(NCT03102242) evaluated the safety and efficacy of
atezolizumab before CRT. The primary endpoint of the
disease control rate at 12 weeks was 77.4% [143]. Recently,
the analysis of secondary endpoints was updated. The
median PFS was 23.7 months. The median OS is not yet
estimable [144]. Owing to the encouraging PFS and OS
rates without unexpected safety signals, further studies
are warranted. In a retrospective study, patients with
LA-NSCLC received standard of care or induction ICIs,
followed by standard of care. Although the OS and PFS
rates between the 2 groups were similar, the induction
ICIs group had a significantly lower distant metastasis
rate [145].

For patients unable to complete the PACIFIC regimen
due to chemotherapy-induced adverse effects (AEs),
combining RT with immunotherapy can reduce toxicity
while maintaining survival [146]. The SPRINT study
(NCT03523702) is a prospective phase II trial that tested
sequential pembrolizumab and RT. Patients with LA-
NSCLC (n = 25) having PD-L1 tumor proportion score
(TPS) > 50% were enrolled. The primary endpoint was PFS.
The actuarial 1-year PFS rate was 74% and the actuarial
1-year OS rate was 95% [147]. The promising initial results

suggest that sequential pembrolizumab and RT may be an
alternative treatment approach for patients in this setting.
Further clinical trials should be designed to optimize the
SPRINT regimen and compare it with the standard of care.
The DOLPHIN study was a nonrandomized, single-arm,
phase II trial. Patients with PD-L1 positive, LA-NSCLC
received RT (60 Gy) concurrently with durvalumab, fol-
lowed by maintenance durvalumab therapy. The 12-month
PFS rate was 72.1%, far exceeding the 28% set under the
original hypothesis. The median PFS was 25.6 months and
the ORR was 90.9% [148]. This study is expected to support
further development of phase III clinical trials. The
START-NEW-ERA study (NCT05291780) was a single-arm
phase II trial that explored the efficacy of SBRT combined
with immunotherapy in patients with LA-NSCLC. The
median OS was 55 months [148, 149]. Early outcomes
suggest that SBRT followed by ICIs may be a suitable
treatment regimen for these patients. The TRADE-hypo
study (NCTO04351256), a prospective randomized phase
II trial, addressed the safety and efficacy of durvalumab
combined with either conventional (30 x 2.00 Gy) or
hypofractionated (20 x 2.75 Gy) RT. The primary end
point was ORR [150]. Preliminary results were showcased
at the 2024 ESMO meeting. Interim futility analysis was
conducted in the conventional RT arm and was positive
with 11/18 patients achieving tumor response (5 stable
disease, 2 progressive disease). This suggests that for
patients who are not suitable for chemotherapy, a novel
combination of duvalizumab and conventional chest RT
could potentially be beneficial. Additional safety, efficacy,
and biomarker data are expected to be provided in May
2025.
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3.4 | Metastatic NSCLC

The PEMBRO-RT (NCT02492568) and MDACC
(NCT02444741) trials provided solid evidence for combin-
ing RT and ICIs for metastatic NSCLC. Both trials enrolled
patients with metastatic NSCLC who were randomly
assigned to receive either pembrolizumab alone or SBRT.
In the phase II PEMBRO-RT trial, pembrolizumab was
administered within 7 days of the completion of SBRT
(3 X 8 Gy). The primary endpoint of 12-weeks ORR was
improved from 20% in the pembrolizumab alone arm to
50% in the pembrolizumab after RT arm [151]. Intriguingly,
subgroup analyses showed the largest benefit from the
addition of RT in patients with PD-Ll-negative tumors,
which significantly improved PFS and OS. In the phase
I/II MDACC trial, SBRT was 50 Gy/4 fractions or 45
Gy/15 fractions. No significant differences in ORR or PFS
were observed; however, exploratory analyses suggested
that, for patients with low PD-L1 expression, a longer
median PFS was observed in the ICIs plus RT group [152].
None of the trials met the preset criteria for meaningful
clinical benefit owing to the small sample size. A pooled
analysis showed significantly longer median PFS (9.0
vs. 4.4 months) and median OS (19.2 vs. 8.7 months) in
the pembrolizumab plus RT group, with no new safety
concerns [153]. Unfortunately, this pooled study could
not draw conclusions regarding the optimal dose and
timing of RT to induce a distant response, which should
be further confirmed in specialized, large, randomized
trials.

While RT combined with ICIs shows promise for
NSCLC, the enhanced antitumor effect appears to be lim-
ited to other tumor types [154]. Indeed, evidence to date has
shown that combination therapy has limited benefits for
most patients with HNSCC. A phase II trial (NCT02684253)
enrolled patients with metastatic HNSCC who were ran-
domly assigned to receive nivolumab alone or nivolumab
in combination with SBRT. Regrettably, no improvement
in clinical outcomes or evidence of the abscopal effect was
found [155]. In a phase II study involving 18 patients with
relapsed small cell lung cancer (SCLC) (NCT02701400),
durvalumab and tremelimumab were administered with
or without SBRT (3 X 9 Gy). SBRT was administered as
an immune sensitizer prior to ICIs treatment. However,
neither OS nor PFS showed a significant difference in the
two arms [156]. In a recent trial (NCT03104439) involv-
ing patients with hepatocellular carcinoma and portal vein
tumor thrombus, camrelizumab and apatinib were admin-
istered with or without SBRT (36-40 Gy/6-8 Gy). Longer
median OS (12.7 vs. 8.6 months) and median PFS (4.6 vs.
2.5 months) were observed in the ICIs plus SBRT group
[157]. This combination regimen showed clinical benefits
with an acceptable safety profile, and may be a promising

first-line therapy for patients with hepatocellular carci-
noma and portal vein tumor thrombus. Regarding immune
desert tumors, including microsatellite-stable colorectal
cancer and pancreatic ductal adenocarcinoma, despite
their limited response to immunotherapy alone, a phase
II trial (NCT03104439) showed that RT can enhance the
immunotherapy response even in these cases [158].

Collectively, RT combined with ICIs has demonstrated
encouraging outcomes in patients with NSCLC and certain
solid tumors. However, many clinical studies investigating
the efficacy of combining RT with ICIs have not included
ICI or RT monotherapy. This omission obstructed the
ability to discern a synergistic therapeutic benefit from
combination therapy compared with the effects of either
monotherapy independently.

4 | CHALLENGES AND CONCERNS

4.1 | Fractionation and scheduling

For decades, conventionally fractionated radiotherapy
(CFRT) has typically been delivered at doses of 1.8 to 2.0
Gy per fraction, 5 days per week, for 5-8 weeks. In con-
trast, hypofractionated radiotherapy (HFRT) delivers large
doses in one-fifth fractions and is increasingly used in clin-
ical practice. The most prominent example of an HFRT
is SBRT. Biological differences between SBRT and CFRT
exist [159]. Low-dose irradiation with a single dose (0.5-1.0
Gy) has been suggested to modulate the TME and activate
immune responses [88, 160, 161]. Low-dose HFRT refers to
a higher dose per fraction but a lower total dose of radia-
tion for cancer treatment, both used in preclinical models
[88] and clinical trials [162, 163].

Preclinical studies have emphasized the fractionation
and scheduling of RT with ICIs to establish a long-
lasting antitumor immune response [164, 165]. The optimal
regimen of RT combined with ICIs to maximize the antitu-
mor immune response remains controversial [166]. Recent
clinical trials have evaluated the safety and effective-
ness of HFRT and low-dose hypofractionated radiotherapy
(LDHRT) in combination with ICIs. However, in patients
with microsatellite stable (MSS) colorectal cancer, the
abscopal effect was not observed in either radiation regime,
and the median PFS and OS were limited [167]. A random-
ized study (NCT02888743) in 2022 evaluated ICIs combined
with LDFRT or HFRT in patients with metastatic NSCLC
[168]. The study did not identify any significant benefit in
ORR for either the LDFRT or HFRT regimens, and no sig-
nificant differences in PFS or OS were observed between
the treatment arms.

A latest phase I/II clinical trial (NCT02239900) com-
pared the administration of concurrent or sequential SBRT
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with ipilimumab in patients with metastatic cancer [169,
170]. All patients received ipilimumab and were ran-
domly assigned to 5 treatment groups based on tumor
size and location. The group that received sequential ipil-
imumab with SBRT to the lungs showed the highest rate
of clinical benefit. A recent systematic literature review
sought to reach a consensus among experts on the com-
bination of SBRT and ICIs [171]. The consensus reached
was that anti-PD-L1 or anti-PD-1 treatment should con-
tinue during SBRT delivery without omission of treatment
cycles and that nivolumab plus ipilimumab should not
be administered on the same day as SBRT. However, in
an observational cohort study of patients with early-stage
NSCLC, all patients were treated with SBRT (27 Gy/1 frac-
tion or 50 Gy/5 fractions) targeting different lung lesions
[172]. This large retrospective analysis found no statisti-
cally significant differences in the 5-year OS or 5-year PFS
rates, raising the question of whether the fraction and
location matter. Indeed, irradiation of liver metastases in
patients with NSCLC has been shown to result in stronger
activation of antitumor immunity than irradiation of pul-
monary metastases [170]. Several ongoing clinical trials
have persistently scrutinized diverse regimens of RT com-
bined with ICIs [173, 174]. Emerging evidence will furnish
precise directives for an optimal regime.

4.2 | DLNs irradiation and dose

Notably, the total dose of the DLNs irradiation is a topic
worthy of discussion. DLNs serve as the site where DCs
prime antigen-specific CD8% T cells, and irradiation of
lymphoid organs can result in lymphopenia [45, 175].
A study published in 2018 highlighted that irradiation
of the DLN impeded adaptive immune responses and
attenuated the efficacy of SBRT and ICIs [67]. A con-
cept termed lymphocyte-sparing RT has been proposed
that advocates the sparing of lymphocytes whenever pos-
sible [176]. Therefore, precautionary irradiation of the
DLNs is recommended [177]. A nonrandomized phase II
trial (NCT01463423) enrolled patients into 3 groups based
on the tumor stage. The results suggest that individual
doses and fractionation of SBRT, including doses lower
than those routinely administered, are associated with
local tumor control [178]. Therefore, individualized dosing
should be considered in future studies.

4.3 | Toxicity

Pneumonitis and radiation pneumonitis are the most com-
mon AEs associated with the administration of CRT [141].
The overall incidence of pneumonitis in the PACIFIC trial

was 33.9% [25, 27]. In real-world studies, the incidences
of all-grade and grade >3 pneumonitis were 35% and 6%,
respectively [179]. The incidence of pneumonitis varies
with race and age [146, 179]. The MDACC trial found
that most AEs were self-limiting, and no patient in the
ICI combined with SBRT group experienced grade 4
or 5 toxic effects [152]. However, another multicenter
analysis demonstrated that SBRT with concurrent ICI
increased the risk of grade 3 pneumonitis compared with
that of SBRT alone [180]. Closer monitoring should be
considered in patients who are administered ICIs and
RT. Differentiating between RT-induced pneumonitis
and immune-related pneumonitis is challenging [27].
Radiomics holds great promise in aiding correct diagnosis
[181]. To date, evidence indicates that the observed risk of
severe toxicity for SBRT plus anti-PD1/PD-L1 monother-
apy is low [171], and it remains to be seen whether the
combination simply increases or amplifies toxicity. In
the absence of objective data showing that simultaneous
administration leads to a significant increase in toxicity,
RT combined with ICI is a reasonable strategy in clinical
practice.

5 | CONCLUSIONS

The immune system’s capacity to reject a tumor depends
on the presence of neoantigens within cancer cells. RT
increases the number of neoantigens via in situ vacci-
nation. Additionally, RT reprograms the TME to foster a
durable and systemic immune response. Ongoing studies
have explored precision RT based on gene expression pro-
files to complement the precision of cancer medicine using
immunotherapy.

In conclusion, the integration of RT with immunother-
apy represents a paradigm shift in cancer treatment. This
field awaits the results of the ongoing clinical trials. Over
the past five years, promising clinical trial outcomes have
been predominantly observed in NSCLC. Conversely, trials
investigating other solid malignancies, including HNSCC
and colorectal cancer, are limited in number, and the
outcomes have been less encouraging. The inherent het-
erogeneity of tumors may dictate disparate responses to
the combination of RT and immunotherapy. A severe
limitation of ongoing clinical trials is that they are not
biomarker-driven. Biomarker implementation and the
identification of distinct patient subsets are priorities.
However, challenges, including determining the optimal
dosing, fraction, and schedule with the lowest toxicity
of the combination therapy, remain. Further research is
imperative to refine combination therapy and identify pre-
dictive biomarkers for the individualized treatment of solid
tumors.
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