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Significant developments in cancer treatment have been made since the advent of
immune therapies. However, there are still some patients with malignant tumors
who do not benefit from immunotherapy. Tumors without immunogenicity are
called “cold” tumors which are unresponsive to immunotherapy, and the oppo-
site are “hot” tumors. Immune suppressive cells (ISCs) refer to cells which can
inhibit the immune response such as tumor-associated macrophages (TAMs),
myeloid-derived suppressor cells (MDSCs), regulatory T (Treg) cells and so on.
The more ISCs infiltrated, the weaker the immunogenicity of the tumor, show-
ing the characteristics of “cold” tumor. The dysfunction of ISCs in the tumor
microenvironment (TME) may play essential roles in insensitive therapeutic
reaction. Previous studies have found that epigenetic mechanisms play an impor-
tant role in the regulation of ISCs. Regulating ISCs may be a new approach to
transforming “cold” tumors into “hot” tumors. Here, we focused on the function
of ISCs in the TME and discussed how epigenetics is involved in regulating ISCs.
In addition, we summarized the mechanisms by which the epigenetic drugs con-
vert immunotherapy-insensitive tumors into immunotherapy-sensitive tumors
which would be an innovative tendency for future immunotherapy in “cold”
tumor.
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1 | BACKGROUND

Cancer cells and the resulting tumor progression are
greatly affected by metabolic stress within various regions
of the tumor microenvironment (TME) [1]. The TME
is composed of diverse cell types that either support
or restrain tumorigenesis, which include immune cells
and immune suppressive cells (ISCs). Immunotherapy is

arginase-1; ARID3B, AT-rich interaction domain 3; ATM, ataxia
telangiectasia-mutated gene; Bcl-2, B-cell lymphoma-2; Bel-x1, B-cell
lymphoma-extra large; BLIMP1, B lymphocyte-in-duced maturation
protein-1; BMF, B-cell lymphoma-2; c-MET, cellular-mesenchymal
epithelial transition factor; c-Myc, myelocytomatosis viral oncogene
homolog; C/EBPa, CCAAT/enhancer-binding protein alpha; CAF,
cancer-associated fibroblast; CaMKK§p, Ca2*/calmodulin-dependent
protein kinase kinase; CCL17, C-C motif chemokine ligand 17; CCL18,
C-C motif chemokine ligand 18; CCL20, C-C motif chemokine ligand 20;
CCL22, C-C motif chemokine ligand 22; CCL28, C-C motif chemokine
ligand 28; CCL2, C-C motif chemokine ligand 2; CCL5, C-C motif
chemokine ligand 5; CCND1, cyclin D1; CDK2, cyclin dependent kinase
2; CGI, CpG island; circRNA, circular RNA; CMGT, canine mammary
gland tumor; CMML, Chronic myelomonocytic leukaemia; CNS,
conserved non-coding sequence; COX-2, cyclooxygenase-2; CPEB4,
cytoplasmic polyadenylation element binding protein 4; CRC, colorectal
cancer; CRLM, colorectal liver metastasis; CSF-1R, colony stimulating
factor-1 receptor; CTCL, central T cell lymphoma; CTL, cytotoxic
lymphocytes; CTLA-4, cytotoxic T lymphocyte-associated antigen-4;
CXCL10, C-X-C motif chemokine ligand 10; CXCL12, C-X-C motif
chemokine ligand 12; CXCLI13, C-X-C motif chemokine ligand 13;
CXCL9, C-X-C motif chemokine ligand 9; CXCR1, C-X-C motif
chemokine receptor 1; CXCR2, C-X-C motif chemokine receptor 2;
CXCRS5, C-X-C chemokine receptor type 5; DC, dendritic cell; DKK3,
Dickkopf WNT signaling pathway inhibitor 3; DNMT1, DNA
methyltransferase 1; DNMT3A, DNA methyltransferase 3 alpha;
DNMT3B, DNA methyltransferase 3 beta; DNMTi, DNA
methyltransferase inhibitor; dsSRNA, double-stranded RNA; DUSP3,
dual specificity protein phosphatase 3; E2F1, E2 promoter binding factor
1; ECM, extracellular matrix; EMT, epithelial-mesenchymal transition;
EOC, epithelial ovarian cancer; ER, endoplasmic reticulum; ERK,
extracellular signal-regulated kinase; ESCC, esophageal squamous cell
cancer; eTreg, effector regulatory T; ETS1, ETS proto-oncogene 1; exo,
exosomes; EZH2, enhancer of Zeste homolog 2; EZH2i, enhancer of
Zeste homolog2 inhibitor; FOXMI1, Forkhead box M1; FOXO3a, forkhead
box 03; FOXP3, forkhead box P3; G-MDSC, granulocytic-MDSC;
GADD45B, growth arrest and DNA damage inducible protein beta; GC,
gastric carcinoma; GITR, glucocorticoid induced tumor necrosis
factorreceptor; GSK2, glycogen synthase kinase 2; GSK3p, glycogen
synthase kinase-3(; H3K4Me3, histone H3 lysine 4; HAT, histone
acetyltransferases; HCC, hepatocellular carcinomas; HDAC, histone
deacetylase; HDACI, histone deacetylase inhibitor; HDM, histone
demethylase; HGF, hepatocyte growth factor; HIF-1a, hypoxia inducible
factor-1; HLA-DR, human leukocyte antigen — DR; HMT, histone
methyltransferase; HOTAIR1, HOX transcript antisense RNA; HOXAL,
homeo box Al; I-MDSC, immature-MDSC; IBD, inflammatory bowel
disease; IC, immune checkpoint; ICI, immune checkpoint inhibitor;
ICOS, inducible co-stimulator; ICOSL, inducible co-stimulator ligand;
IDHII, isocitrate dehydrogenase 1 inhibitor; IDHZ2i, isocitrate
dehydrogenase 2 inhibitor; IDH, isocitrate dehydrogenase; IFN-y,
Interferon-gamma; IGF2BP3, insulin like growth factor 2 mrna binding
protein 3; IL-10, interleukin 10; IL-16, Interleukin 16; IL-17, interleukin

the next great breakthrough in antitumor drug research
after chemotherapy. Immunotherapy, including cancer
vaccines, adoptive cell transfer (ACT), and immune check-
point inhibitors (ICIs), has obtained durable clinical
responses, but their efficacies vary and only specific
subsets of cancer patients can benefit from them [2].
Patients with non-immunogenic tumors (“cold” tumors)

17; IL-4, Interleukin-4; IL-6, Interleukin 6; IMC, immature myeloid cells;
INT1, SWI/SNF related, matrix associated, actin dependent regulator of
chromatin, subfamily B, member 1; iNOS, Inducible nitric oxide
synthase; IRF7, Interferon regulatory factor 7; IRFS, Interferon
regulatory factor 8; ISC, immune suppressive cell; ITM2B, Integral
Membrane Protein 2B; ITP, immune thrombocytopenia; iTreg, induced
Treg; K-RAS, kirsten Rat Sarcoma Viral Oncogene Homolog; KLF2,
Kruppel-like factor; KLF4, Kriippel-like factor 4; KLF6, Kruppel-like
factor 6; LC3B, light-chain 3B; LLC, Lewis lung cancer; IncRNA, long
non-coding RNA; LNP, Lipid-like nanoparticle; M-MDSC, monocytic
MDSC; mAb, monoclonal antibody; MAPK, mitogen-activated protein
kinase; MAVS, mitochondrial antiviral signaling protein; MDAS5,
melanoma differentiation-associated gene 5; MDM2, mouse
doubleminute 2 homolog; MDM2, mouse doubleminute 2 homolog;
MDS, myelodysplastic syndromes; MDSC, myeloid-derived suppressor
cell; mel, monomethylation; me2, dimethylation; me3, trimethylation;
MGLI1, Macrophage galactose-C type lectin; MHC-II, class II major
histocompatibility complex; MIF, macrophage migration inhibitory
factor; miRNA, microRNA; MMP, matrix metalloproteinase; MMSC,
multiple myeloma stem cell; mTOR, mammalian target of rapamycin;
MYV, microvesicle; MYC, myelocytomatosis; MYCN, BHLH transcription
factor; NEDD4-1, Neural precursor cell expressed, developmentally
down-regulated 4, E3 ubiquitin protein ligase; NK, nature killer;
NKTCL, Natural killer/T-cell lymphoma; NO, nitric oxide; NOS2, nitric
oxide synthase 2; NOX2, NADPH-oxidase 2; NPR3, nuclear factor
erythroid 2-like 3 receptor; Nrpl, neuropilin-1; NSCLC, non-small cell
lung carcinoma; OPN, osteopontin; PABP, poly(A)-binding protein;
PBMC, peripheral blood mononuclear cell; PCa, prostate cancer; PD-1,
programmed cell death protein 1; PD-L1, programmed death-ligand 1;
PDAC, pancreatic ductal adenocarcinoma; PDCD4, programmed cell
death 4; PDCD4, Programmed cell death protein 4; PGC-1«, Peroxisome
proliferator-activated receptor y coactivator la; PGCl-at, Peroxisome
proliferator-activated receptor gamma coactivator-1 alpha; PGE2,
prostaglandin E2; PGE2, prostaglandin E2; PI3K-AKT,
Phosphatidylinositol 3-kinases-protein kinase B; PI3K,
phosphoinositide-3 kinase; PIP3,
phosphatidylinositol-3,4,5-triphosphate; PMN-MDSC,
polymorphonuclear MDSC; PPARy, peroxisome proliferator-activated
receptor y; PRDM1, PR/SET Domain 1; PTBP1, polypyrimidine
tract-binding protein; PTCL, peripheral T-cell lymphoma; PTEN,
phosphatase and tensin homolog deleted on chromosome 10; PTM,
post-translational modifications; pTreg, peripherally induced Treg; RBP,
RNA-binding proteins; RORyt, retinoid-related orphan receptor gamma
t; ROS, reactive oxygen species; Runxl, runt-associated transcription
factor 1; RUNXOR, runt-related transcription factor 1 overlapping RNA;
SAM, S-adenosylmethionine; SAPK, stress activated protein kinase;
SETDBI, SET domain bifurcated 1; siRNA, small interfering RNA;
SMARCA4, SWI/SNF related, matrix associated, actin dependent
regulator of chromatin, subfamily A, member 4; snoRNA, small
nucleolar RNA; SOCSI, suppressor of cytokine signaling 1; SOSC1,
suppressor of cytokine signal 1; SOX4, SRY-related high-mobility-group
box 4; SPCA2, ATPase secretory pathway Ca2* transporting 2; STAT3,
signal transducer and activator of transcription 3; STAT6, Signal
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can’t respond or slightly respond to immunotherapy. Con-
verting “cold” into “hot” is always a pivotal objective
in immunotherapy. A large number of past researches
have predominantly focused on immune cells. However,
we found that ISCs play an essential part in tumor
immunotherapies. A comprehensive understanding of
ISCs in the TME is essential for deciphering the mecha-
nisms of immunotherapies, defining predictive biomark-
ers, and identifying novel therapeutic targets.

Epigenetics refers to heritable changes in cellular
phenotype independent of DNA sequence alterations,
which include DNA methylation, histone modifications,
and non-coding RNAs. Regulators synergistically regulate
chromatin structure and gene expression through various
covalent modifications of histones, proteins, and nucleic
acids. Epigenetic alterations lead to carcinogenesis by reg-
ulating oncogenic and tumor suppressor gene pathways
[3, 4], and by affecting the activation, differentiation, and
function of immune cells and ISCs [5, 6]. Since epigenet-
ics plays an important role in the process of ISCs affecting
tumors, therapeutic strategies implementing epigenetic
modulating drugs are expected to significantly impact
the TME through inhibition of ISCs (such as myeloid-
derived suppressor cells [MDSCs], regulatory T [Treg] cells
and so on), resulting in converting “cold” into “hot” and
increasing the sensibility of tumors to immunotherapy.

In this review, we discussed the diverse mechanisms
of epigenetic regulation in ISCs and summarized the
epigenetic modulation of ISCs to regulate the TME, result-
ing in converting “cold” tumors into “hot” tumors for
improved therapeutic outcomes, which is considered a
huge breakthrough in tumor immunotherapies.

transducer and activator of transcription 6; TAM, tumor-associated
macrophages; TCF7, transcription factor 7; TCR, T cell antigen receptor;
TET2, Tet methylcytosine dioxygenase 2; TET, ten-eleven translocation;
TGF-B, transforming growth factor-g8; TGFBI, transforming growth
factor beta Induced; TGFBRI1, Transforming growth factor beta receptor
type 1; TGFBR3, Transforming growth factor beta receptor type 3; Th17,
T helper cell 17; Thl, T helper cell 1; THBSI, thrombospondin 1; THC,
tetrahydrocannabinol; TIM-3, T cell immunoglobulin domain and
mucin domain-3; TIP, Tat-Interactive protein; TLR4, Toll-like receptor 4;
TLR, Toll-like receptor; TME, tumor microenvironment; TNF-c, tumor
necrosis factor-o; TNF-R1, TNF receptor 1; TNFR2, TNF receptor 2;
TNFSF10, TNF superfamily member 10; TNRCS, trinucleotide repeat
containing 6; TRAIL-R2, TNF-related apoptosis-inducing ligand
receptor 2; TRAILR1, TNF-related apoptosis-inducing ligand receptor 1;
Treg, regulatory T cell; TSDR, Treg specific demethylated region; tTreg,
thymic-derived Treg; UBE2C, ubiquitin conjugating enzyme E2 C; UPR,
unfolded protein response; UTR, untranslated region; VEGF, vascular
endothelial growth factor; WD, tryptophan-aspartic acid; WDRS, WD
repeat domain 5; YAP], Yes Associated Protein 1; ZEBI, zinc finger E-box
binding homeobox 1; ZEB2, zinc finger E-box binding homeobox 2.

Yijia Tang, Guangzu Cui, and Haicong Liu contributed equally to the
article.

2 | ISCs

The activation and maintenance of the immune system is
regulated both positively and negatively. ISCs mainly refer
to a class of cells that can release inhibitory factors in the
body, suppress immune response, and maintain immune
homeostasis which include Treg cells, MDSCs, tumor-
associated macrophages (TAMs), fibroblasts, and tumor
cells themselves. Since Treg cells, MDSCs, and TAMs are
the most representative and infiltrated ISCs in the tumor
immune microenvironment, we start from these three cells
to deeply introduce its mechanism. (Figure 1)

Under physiological conditions, ISCs can negatively
regulate the body’s immune response, maintain immune
homeostasis, and prevent autoimmune diseases and exces-
sive inflammation by secreting immunosuppressive fac-
tors, expressing immunomodulatory molecules, or directly
contacting other immune cells to inhibit the activation,
proliferation, and effector functions of T cells, B cells,
nature killer (NK) cells, etc.

The effect of ISCs on the TME is mainly to inhibit
the immune surveillance and killing of tumor cells, and
promote tumor growth, invasion, and metastasis. ISCs sup-
press the activation, proliferation, and effector functions of
cytotoxic lymphocytes (CTL), NK cells, and other immune
cells by secreting immunosuppressive factors (such as
transforming growth factor-8 [TGF-f] [7], interleukin 10
[IL-10] [8], prostaglandin E2 [PGE2] [9], etc.), express-
ing immune regulatory molecules (such as programmed
death-ligand 1 [PD-L1] [10], cytotoxic T lymphocyte-
associated antigen-4 [CTLA-4] [11], T cellimmunoglobulin
domain and mucin domain-3 [TIM-3] [12], etc.), or directly
contacting other immune cells [13]. ISCs also affect the pro-
cesses of angiogenesis, lymphangiogenesis, extracellular
matrix (ECM) remodeling, and others in the TME, fur-
ther altering the biological characteristics of the tumor [14]
(Figure 2).

21 | TAMs

It is currently thought that TAMs may originate from
bone marrow-derived monocyte precursors or from tissue-
specific embryonic-derived macrophages [15-17]. TAMs
are similar to M2 macrophages in a sense, but TAMs are not
considered to be an independent subset of macrophages,
and the presence of TAMs is closely related to tumors [18].
TAMs and M2 macrophages have some similar characteris-
tics, such as the expression of some “overlapping” marker
molecules, such as CD206, CD163, and similar to M2
macrophages, TAMs can also secrete some immunosup-
pressive cytokines such as IL-10, TGF-g, etc. [19]. Unlike

95U8017 SUOLIWIOD BA 8. 3|qeol(dde au Aq peusanob afe saolle O ‘8Sh JO'Se|n Joj Aelq i 8uljuO /8|1 UO (SUORIPUOD-pUe-SWBlW00 A8 |imArelq 1 pul|Uo//:SdnL) SUORIPUOD PUe SWs | 8y} 89S *[¢202/TT/20] Uo Akldiaul|uo A8|IM ‘9pS2T 2oe0/200T OT/I0p/u0d A8 | ARelq1jeuljuo//Sdiy Wiy papeojumod ‘9 ‘%202 ‘8rSEEese



CANCER
4 | (COMMUNICATIONS

TANG ET AL.

/_> M1
Monocyte TAM
MDP l I D
........................... »
/ M-MDSC M-MDSC
— —
CMP  IMC GMP MDSC like cell
\ ) R
B L) e ( )
W) > & )
PMN-MDSC PMN-MDSC
MB &»
/.‘ Tumor microenvironment
- Neutrophil
HSC
tTreg P
.............................. » pTreg
CLP CLP
---------------- » —
Naive CD4+ Naive CD4+ ™
Bone marrow Thymus — Peripheral tissues

FIGURE 1

Th3

Schematic diagram of TAMs, MDSCs, and Treg cells development. The activation and maintenance of the immune system is

regulated both positively and negatively. ISCs are capable of suppressing the immune response of the body and include mainly Treg cells,
MDSCs, and TAMs in the tumor immune microenvironment. Treg cells have two developmental pathways: tTreg and pTreg cells. MDSCs can
be further divided into monocytic MDSCs (M-MDSCs) and polymorphonuclear MDSCs (PMN-MDSC or G-MDSC), according to their surface
markers and functions, and TAM can acquire M1 or M2 phenotypes. Abbreviations: CLP, common lymphoid progenitor; CMP, common

myeloid progenitor; GMP, granulocyte-monocyte progenitor; HSC, hematopoietic stem cell; IMC, immature myeloid cell; ISC, immune
suppressive cell; MB, myeloblast; MDP, macrophage/dendritic cell progenitor; MDSC, myeloid-derived suppressor cell; pTreg, peripherally
induced Treg; TAM, tumor-associated macrophage; Th3, helper 3 T; Trl, type 1 regulatory T; Treg, regulatory T; tTreg, thymic-derived Treg.

M2 macrophages, TAMs highly express surface marker
molecules, such as CD68, CD163, Macrophage galactose-C
type lectin (MGL1), Dectin-1, CD81, class II major histo-
compatibility complex (MHC-II), and scavenger receptor
A. Movahedi et al. [20] reported that the tumor-infiltrating
monocyte pool is mainly Ly6C* CX3CR1°Y, and showed
that Ly6CMe" monocytes are direct precursors of TAMs
[18, 21]. Some studies have found that TAM differentiation
depends on Notch signaling, transcriptional regulation of
RBPJ [22, 23].

211 | Tumor-promoting effect of TAMs

TAMs can promote tumor growth, metastasis, angiogen-
esis, immunosuppression, drug resistance, and many
other biological behaviors of tumor cells [19, 24]. TAMs
can express a variety of chemokines (such as C-C motif
chemokine ligand 2 [CCL2], C-C motif chemokine lig-
and 5 [CCL5], C-C motif chemokine ligand 17 [CCL17],
etc.), cytokines (such as vascular endothelial growth fac-

tor [VEGF], IL-10, Interleukin-4 [IL-4], and TGF-{), and
enzymes (such as cyclooxygenase-2 [COX-2], matrix metal-
loproteinase [MMP], and cathepsin K) to inhibit the killing
defense of the human immune system against tumor tissue
function, thereby promoting tumor development, metas-
tasis, and resistance to chemotherapy and immunotherapy
[25]. TAMs can promote the maintenance of tumor stem
cell properties by secreting some related factors (such as
TGF-f [26]), and tumor stem cells can also activate TAMs
by some signals (such as the Wnt pathway [27]).

Studies have shown that TAMs play an important role
as tumor-promoting cells in the occurrence and develop-
ment of breast cancer [28-30]. An animal experiment had
previously shown that targeting colony-stimulating fac-
tors with drugs to reduce TAMs infiltration can reduce
tumor growth and metastasis [31]. TAMs can enhance
ECM destruction and invasion by tumor cells through
the production of MMPs, cysteine cathepsins, and ser-
ine proteases, cysteine-rich acidic proteins, and C-C motif
chemokine ligand 18 (CCL18), among other substances
[32-34]. TAMs can promote tumor drug resistance by
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FIGURE 2 The mechanism of TAMs, MDSCs, and Treg cells affecting tumor cells. The TME is composed of many different cells that

support or restrain tumorigenesis which includes ISCs, such as TAMs, MDSCs, and Treg cells. These cells may promote or inhibit the

development of tumors through different mechanisms. Abbreviations: ARG, arginasel; BCL-2, B-cell lymphoma-2; CCL18, chemokine ligand
18; CCL20, chemokine ligand 20; CCL22, chemokine ligand 22; CCL28, chemokine ligand 28; CXCL10, C-X-C motif chemokine ligand 10;
CXCL9, C-X-C motif chemokine ligand 9; IL-10, interleukin 10; IL-12, interleukin 12; IL-35, interleukin 35; IL-6, interleukin 6; ISC, immune
suppressive cell; M-MDSC, monocytic MDSC; MDSC, myeloid-derived suppressor cell; MDSC, myeloid-derived suppressor cell; NK, nature
killer; PD-LI1, programmed cell death 1 ligand 1; PGE2, prostaglandin E2; PMN-MDSC, polymorphonuclear MDSC; ROS, reactive oxygen
species; TAM, tumor-associated macrophage; TCR, T cell antigen receptor; TGF-g, transforming growth factor-3; TME, tumor

microenvironment; TRAILRI1, (TNF)-related apoptosis-inducing ligand receptor 1; Treg, regulatory T.

metabolic reprogramming, promoting tumor angiogene-
sis, producing multiple cytokines, and releasing exosomal
miRNAs [30, 35, 36]. In addition, TAMs play an impor-
tant role in various tumor tissues, such as glioma [15, 37],
endometrial adenocarcinoma [38, 39], and so on.

2.1.2 | Tumor-inhibiting effect of TAMs

Even though many of the above studies have shown
that TAMs have a tumor-promoting effect in tumor tis-
sue, however, a study of patients with stage III colon
cancer who received folinic acid, fluorouracil, and oxali-
platin (FOLFOX) chemotherapy found that a high volume
of TAMs was associated with a better prognosis [21].
In the TME, due to reasons such as hypoxia, nutrient
deficiency, metabolic disorders, and stress, cells in the
TME die, so that TAMs gather and generate M1 polar-
ization to clear dead cells in the TME, resulting in a

pro-inflammatory and anti-tumor effect. However, with
the development of tumors and the chronicity of inflam-
mation, anti-inflammatory signals and some substances
produced by tumor cells make TAMs turn to M2 polariza-
tion. At this time, TAMs produce some anti-inflammatory
molecules, thereby promoting angiogenesis and immuno-
suppression, thereby leading to tumor progression [40]. All
in all, the specific TME determines the roles of TAMs in
tumorigenesis and development.

2.1.3 | TAMsin immune TME

As previously mentioned, immunosuppression is an
important factor in the tumor-promoting effects of TAMs.
TAMs can produce many cytokines, such as IL-10,
IL-6, TGF-S, and PGE2, to limit the function of cytotoxic
T cells to achieve tumor-promoting effects [41]. During
cold tumor formation, TAMs can achieve this by reducing
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the infiltration of anti-tumor immune cells and increas-
ing the recruitment of tumor-promoting immune cells.
TAMs reduce CD8" T cell infiltration by producing TGF-
B and down-regulating C-X-C motif chemokine ligand 9
(CXCL9) and C-X-C motif chemokine ligand 10 (CXCL10)
expressions to achieve immunosuppression [42, 43]. PGE2
produced by TAMs reduces dendritic cell (DC) and NK
infiltration and activation in tumor tissue by inhibiting DC
and NK cell differentiation and maturation [44, 45]. TAMs
can enhance their immunosuppressive effects by secret-
ing secretory C-C motif chemokine ligand 22 (CCL22), C-C
motif chemokine ligand 20 (CCL20), and TGF-g to recruit
and activate Treg cells and by secreting PGE2 to enhance
infiltration and activation of MDSCs [42, 46].

2.2 | MDSCs
MDSCs are the heterogeneous population of immature
myeloid cells (IMCs) that suppress immunity in tumors
and chronic inflammation [47]. Under physiological con-
ditions, IMCs produced in the bone marrow migrate to
different peripheral organs and rapidly differentiate into
mature granulocytes, macrophages or DC. Under patho-
logical conditions, such as TME or acute and chronic
infections, factors are produced that promote the accumu-
lation of IMC at these sites, prevent their differentiation
and induce their activation, known as MDSCs [48].
Immunophenotype of human MDSCs defined by the
expression of CD11b, CD33 and the negative or low expres-
sion of human leukocyte antigen - DR (HLA-DR) [49].
Based on phenotypic and morphological features, they
were subdivided into polymorphonuclear MDSCs (PMN-
MDSC) and monocytic MDSCs (M-MDSC), which led to
their different (although partially overlapping) functions
in immunosuppression [50]. A small group of myeloid pro-
genitor cells and precursors with MDSC characteristics
and a potent immunosuppressive effect is named “early
MDSC”, accounting for less than 5% of the total population
of MDSCs [51].

221 | Tumor-promoting effect of MDSCs

Activated MDSCs secrete chemokines, cytokines, and
enzymes that contribute to tumor cell invasion, prolifera-
tion, survival, adhesion, and chemoattraction, resulting in
tumor progression, invasion, and metastasis [52]. MDSCs
are recruited into premetastatic niches and promote
tumor metastasis through the chemokine receptors C-X-
C motif chemokine receptor 1 (CXCR1), and C-X-C motif
chemokine receptor 2 (CXCR2) [53]. During metastasis,
tumor cells promote survival by forming heterotypic plugs

that interact with bone marrow cells and platelets. When
tumor cells extravasate, their growth is regulated by the
cellular and growth factors of the microenvironment like
MDSCs, referred to as the metastatic ecotone [54]. MDSCs
promote tumor infiltration by secreting MMPs, which
play an important role in ECM degradation [55]. Research
conducted on breast cancers lacking type II TGF-g recep-
tors has demonstrated that Gr-1* CD11b* cells enhance
tumor cell invasion and metastasis, which are MMP depen-
dent [56]. In addition, MDSCs are associated with tumor
angiogenesis and promote tumor growth [57-59]. Compre-
hending the tumor-promoting mechanisms of MDSCs is
pivotal for developing therapeutic interventions aimed at
tumor transformation.

2.2.2 | Tumor-inhibiting effect of MDSCs
Current studies all point to MDSC promoting tumor
progression by exerting immunosuppressive effects. Nev-
ertheless, stories before cancer are noteworthy. Patients
with inflammatory bowel disease (IBD) are at increased
risk of developing colorectal cancer (CRC) [60]. Mam-
malian target of rapamycin (mTOR) inhibitors attenuate
IBD via Treg expansion promoted by MDSCs [61]. Histone
methyltransferase (HMT) inhibitors have been shown to
improve the condition of IBD and delay the development
of colitis-associated cancer. These inhibitors achieve this
by promoting the accumulation of immunosuppressive
MDSCs in the colon [62]. Interestingly, in a simulated skin
inflammation model using S100A9 transgenic mice, IMC
triggers the generation of CD4* T cells capable of produc-
ing interleukin 17 (IL-17) through the production of CCL4
[63]. Indeed, the role of MDSCs in promoting tumorige-
nesis during chronic inflammation is multifaceted and
warrants extensive exploration.

2.2.3 | MDSCsin immune TME

MDSCs convert “hot” tumors into “cold” ones by sup-
pressing anti-tumor immunity. MDSCs inhibit immune
responses mediated by B cells and NK cells, especially T
cells. The identical mechanisms by which M-MDSCs and
PMN-MDSCs suppress immune responses include upreg-
ulation of signal transducer and activator of transcription
3 (STAT3) expression, induction of endoplasmic reticu-
lum (ER) stress, expression of arginase 1 and expression
of SI00A8/A9 [64]. Distinctively, PMN-MDSCs preferen-
tially use reactive oxygen species (ROS), peroxynitrite,
arginase 1, and PGE2 to mediate immune suppression,
whereas M-MDSCs use nitric oxide (NO), immunosup-
pressive cytokines, such as IL-10 and TGF-B, and the
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expression of immune regulatory molecules like PD-L1
[65]. Despite the predominance of PMN-MDSCs in cir-
culating MDSCs, they are less immunosuppressive than
M-MDSCs at the individual cellular level [66]. In most
cases, the expansion of PMN-MDSC populations is much
greater than that of M-MDSC [67]. In addition, M-MDSC
can differentiate into TAM in the tumor environment, and
these macrophages have a different phenotype and func-
tion from MDSCs [67]. The development of epigenetic
drugs targeting MDSCs holds promise for reversing “cold”
tumors into “hot” ones.

2.3 | Tregcells
Treg cells are key regulators of inflammation and are
important for immune tolerance and homeostasis [68].
Treg cells develop into thymic-derived Treg (tTreg) cells
under the induction of the transcription factor forkhead
box P3 (FOXP3), which plays a crucial role in the dif-
ferentiation, maintenance, and function of Treg cells [69,
70]. Forkhead box O3 (FOXO3a) can also be produced by
naive T cells in the presence of TGF-$ and IL-2, and these
Treg cells are termed induced Treg (iTreg) cells in vitro
and peripherally induced Treg (pTreg) cells in vivo [68].
Compared with iTreg, the function and structure of tTreg
are more stable. Several groups have used microarrays to
analyze developmental and functional differences between
tTregs and iTreg cells [71] and have shown that the expres-
sion of neuropilin-1 (Nrpl) is increased in tTregs. Nrpl
increases the nuclear localization of FOXP3through AKT
phosphorylation, thereby promoting the stability of pTreg
cells and playing its role in anti-tumor immunity [72].
Treg cells, as important immune cells, also play an
important role in TME. However, a large number of studies
have shown that the final effect of Treg cells on tumors has
not been determined [73-75], and their tumor-promoting
or anti-tumor functions may not be mutually exclusive but
depend on time and background.

2.3.1 | Tumor-promoting effect of Treg cells

A large number of studies have found that the infiltration
of a large number of Treg cells into tumor tissues is usu-
ally associated with a poor prognosis for cancer patients
[76]. Treg cells participate in tumor immune escape and
promote the occurrence and development of tumors by
blocking effector T cells responses to cancer cells and
cytokines secretion [77, 78]. At the same time, Betts et al.
[79] found that Treg cells inhibit immune surveillance
during sarcoma formation, and under hypoxic conditions.

Tumor cells can recruit Tregs by upregulating the expres-
sion of C-C motif chemokine ligand 28 (CCL28) to enhance
tumor immune tolerance and promote angiogenesis [80].

At present, the mechanism of how Treg cells inhibit
tumor cells death has not been clearly elucidated, and
some studies believe that the inhibitory effector regulatory
T (eTreg) cells are inseparable from the cell contact-
dependent inhibition mechanism [81-83]. Infiltrating Treg
cells in mouse and human tumors highly express CD25
and CTLA-4 [84]. One of the key functions of CTLA-
4 is to down-regulate the expression of CD80/86 in
antigen-presenting cells and inhibit the activation of con-
ventional T cells [78], thus producing immunosuppressive
effects.

In addition, because Treg cells do not produce IL-2
themselves, they require exogenous IL-2 captured by the
high-affinity IL-2 receptor (CD25 as a component of the
receptor) to survive, and this uptake of IL-2 from the sur-
rounding environment may limit the amount of IL-2 avail-
able to activate and proliferate nearby conventional T cells
[85]. Ohue et al. [86] found that after T cell antigen recep-
tor (TCR) stimulation in draining lymph nodes, naive Treg
cells proliferate dramatically and differentiate into highly
suppressive eTreg cells, which consume IL-2 through high-
affinity IL-2 receptors and secrete inhibitory cytokines
(including IL-10, IL-2, TGF-B3, and IL-35) and ATP degra-
dation to show their inhibitory activity. These inhibitory
mechanisms work in an antigen-nonspecific manner:
Studies have shown that Treg cells in the bone marrow and
blood of patients with hematological malignancies secrete
elevated levels of the cytokines IL-10, TGF-8, and IL-35
[87-89]. Experiments have shown that IL-35 can promote
the proliferation of paraffin-embedded human pancreatic
cancer cells. It can also inhibit tumor cell apoptosis by
inducing Bcl-2 and reducing the expression of (TNF)-
related apoptosis-inducing ligand receptor 1 (TRAILR1)
[90]. At the same time, eTreg cells can also inhibit the
maturation of antigen-presenting cells, such as DCs, in an
antigen-specific manner. TCR transgenic animal models
have shown that antigen-specific Treg cells show supe-
rior immunosuppressive function compared with antigen-
nonspecific Treg cells, and antigen-specific Treg cells show
stronger immunosuppressive function [86].

On the other hand, cytotoxic substances produced by
Treg cells, such as perforin and granzyme, kill effector
T cells [91]. In addition, activated eTreg cells and effec-
tor T cells may express programmed cell death protein
1 (PD-1). In the TME, PD-1 may enhance the activation
and immunosuppressive function of Treg cells, inhibit
the excessive activation of conventional T cells and make
them dysfunctional or depleted by inhibiting TCR and
costimulatory CD28 signaling [92].
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2.3.2 | Tumor inhibition of Treg cells

In addition to tumor promotion, Treg cells have recently
been found to play a role in inhibiting tumor develop-
ment at the early stage of cancer development. Cytokines
secreted by T helper cell 17 (Th17) cells are highly expressed
in both human colon cancer and mouse polyposis [93].
Studies have shown that the persistent inflammatory
response mediated by Th17 can lead to enteritis and ulti-
mately to CRC [93-95]. Treg cells can inhibit the Th17
cell-mediated inflammatory response through an IL-10-
dependent pathway and prevent the occurrence of Thl7
cell-mediated chronic enteritis in a mouse model [96]. On
the other hand, functional analysis of Treg cells in mice
has shown that Treg cells naturally activated by TCR will
exert suppressive functions through cell-cell contacts, such
as CTLA-4 and/or glucocorticoid - induced tumor necrosis
factorreceptor (GITR) signaling. Studies in tumor-bearing
mice have shown that the use of antibodies against Treg
cells can significantly improve their anti-tumor effects,
and their combination with PD-1 antibodies can produce
anti-tumor synergistic effects [97].

The meta-analysis by Shang et al. [98] showed that while
high FOXP3 Tregs infiltration was significantly associated
with poor prognosis in most solid tumors studied, tumor-
infiltrating FOXP3 Tregs were associated with favorable
prognosis in colorectal, head and neck, and esophageal
cancers. This may be related to the suppression of the
excessive inflammatory response of epithelial cells by
Treg cells. As mentioned above, Treg cells can express
cytokines, such as IL-10, and the results of Poutahidis
et al. [99] showed that exogenous IL-10 supplementation
helped down-regulate IL-6 and oncogenic K-ras expression
in epithelial cells. In addition, treatment with IL-10 also
significantly reduced Gr-1* 7/4* (neutrophil) cells, which
were shown to be required for cancer, as tumor invasion
was reversed using anti-LY-6G (Gr-1) antibodies. Together
with these studies, it may be hypothesized that Treg cells
prevent the development and growth of related cancers by
releasing IL-10.

2.3.3 | Tregcellsin the immune TME

FOXP3-expressing Treg cells are abundant in TME. Treg
cells abundantly infiltrate into tumor tissues, which is
often associated with poor prognosis in cancer patients
[100]. Researches had found that targeting at Treg cells
has been found to improve the efficacy of immunother-
apy [75, 101], in other words, converting cold into hot.
Tanaka et al. [100] found that depletion of Treg cells is an
effective way to evoke anti-tumor immunity. A previous
experiment showed that a removal of CD25 Treg cells from

tumor-bearing mice by anti-CD25 monoclonal antibody
(mAb) administration increased tumor-infiltrating CD8
T cells with a resultant eradication of syngeneic tumors
[102]. The reason might be that Treg depletion is likely to
possess an antigen-non-specific “adjuvant effect” because
the depletion activates APCs and up-regulates CD80/86
expression to facilitate strong presentation of tumor-
antigens to tumor-reactive CD4 and CD8 T cells [103]. One
of the recent breakthroughs in cancer immunotherapy is
the clinical use of anti-CTLA-4 antibody, often referred to
as the checkpoint blockade therapy [75]. Recent studies
have suggested the possibility that anti-CTLA-4 mAb pre-
dominantly affects Treg cells [11, 104], thereby enhancing
anti-tumor immune responses which means Treg might
be a target spot to increase the sensitivity of the tumor
to immunotherapy. What is said above reminds that Treg
plays an essential role in the sensitivity of the tumor to
immunotherapy.

3 | EPIGENETICS

3.1 | Non-coding RNAs

Less than 3% of the sequences in the human genome
encode proteins, and more than 90% of the sequences are
transcribed into RNA but do not encode proteins. These
RNA molecules that cannot encode proteins are called
non-coding RNAs. Non-coding RNAs are not by-products
of transcription but have regulatory functions. According
to the size of non-coding RNA molecules, they are often
divided into short non-coding RNA, small non-coding
RNA, long non-coding RNA (IncRNA), and circular RNA
(circRNA). Among them, small non-coding RNAs include
microRNAs (miRNASs), small nucleolar RNAs (snoRNASs),
and other types” [105]. More and more studies have shown
that non-coding RNAs play a very important regulatory
role in the occurrence and development of tumors.

311 | miRNA

miRNA is widely found in animals, plants, and some
viruses. miRNA exerts a negative regulatory effect on gene
expression at the mRNA level [106, 107]. Regarding the
mechanism of miRNA action, on the one hand, miRNAs
can cause mRNA cleavage and thus play a negative
regulatory role [108]. On the other hand, miRNAs can
exert their biological functions through translational
repression [109, 110]. It is currently believed that miRNAs
inhibit cap-dependent translation in the initiation phase
[111]. The interaction of trinucleotide repeat containing
6 (TNRC6) with poly(A)-binding protein (PABP) disrupts
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the function of PABP in protein translation [105]. This may
be the mechanism by which miRNAs exert their effects.

miRNA has been shown to be an important factor in
the development of a variety of diseases, including can-
cer, cardiovascular disease, metabolic endocrine disorders,
etc [112]. Many studies have confirmed the important
role of miRNAs in various cancers. Drosha and Dicer are
two RNase III endonucleases responsible for the forma-
tion of pre-miRNA and miRNA dimers during miRNA
maturation. Loss of function of Drosha and Dicer leads
to down-regulation of miRNAs in cancer, which has a
significant impact on embryonic development and can-
cer development and metastasis [113, 114]. Some miRNAs
exhibit pro-cancer effects. It has been shown that miR-
155-5p upregulates RhoA mRNA levels and translation,
thereby promoting the development and metastasis of
colon cancer [115]. Let-7 miRNA inhibits tumor progres-
sion by targeting and down-regulating the expression of
many oncogenes, including E2 promoter binding factor
1(E2F1), AT-rich interaction domain 3 (ARID3B), Kirsten
Rat Sarcoma Viral Oncogene Homolog (K-RAS), and
Myelocytomatosis viral oncogene homolog (c-Myc) [116].
However, multiple studies have shown that the same
miRNAs have different roles in different tumors. It has
been shown that miR-126 can reduce cell proliferation
in the breast cancer cell line (MCF7), induce apopto-
sis, and inhibit tumor angiogenesis by downregulating
the VEGF-A signaling pathway [117]. miR-126 inhibits
glioma progression by targeting and regulating the Phos-
phatase and tensin homolog deleted on chromosome 10
(PTEN)/Phosphoinositide-3 kinase (PI3K)/protein kinase
B (AKT) and mouse doubleminute 2 homolog (MDM2)-
p53 pathways [118]. Another study showed that miR-126
expression was significantly increased in esophageal can-
cer. miR-126 inhibited cell death by targeting STAT3 three
prime untranslated region (3’-UTR) and down-regulating
the expression of two autophagic signals, light-chain 3B
(LC3B) and p62 protein [119].

312 | LncRNA

LncRNAs are a highly diverse group of non-coding RNAs
larger than 200 nt that do not have the ability to encode
proteins [120]. Different mechanisms of action of IncRNAs
with different subcellular localizations [121]. For intranu-
clear IncRNA, its main mechanism of action is involved
in transcriptional regulation, epigenetic modifications,
and nuclear structure regulation. The same IncRNA
may exert its effects in different tissues through different
mechanisms. For example, IncRNA FIRRE can stabilize
BECN1 mRNA by binding to polypyrimidine tract-binding
protein (PTBP1) to promote tumor development [122].

LncRNAs localized in the cytoplasm are mainly involved
in post-transcriptional gene regulation. LncRNA can
function as miRNA sponges. For example, IncRNA
FENDRR targets miR-362-5p by promoting nuclear factor
erythroid 2-like 3 receptor (NPR3) and inactivating the
p38-mitogen-activated protein kinase (MAPK) pathway
to inhibit hepatocellular carcinomas (HCC) cell viability
while promoting apoptosis [123].

Similar to miRNAs, the development of many diseases
is also related to IncRNA. In cancer development, IncRNA
also has two effects: tumor suppressor and tumor promoter
[124]. SET domain bifurcated 1 (SETDBI) is an oncogene
that encodes an HMT. LncRNA FENDRR silences survivin
through SETDB1-mediated methylation of H3K9, thereby
inhibiting proliferation, migration, and invasion of cholan-
giocarcinoma cells [125]. LncRNA Pvtlb is a p53-dependent
long-stranded non-coding RNA isoform. It can inhibit
the expression of the oncogene Myc without altering the
genomic chromosome, thus inhibiting tumor growth [126].

313 | circRNA

circRNA is a single-stranded closed-loop RNA that is
conserved and tissue-specific. circRNA is currently con-
sidered to function as a post-transcriptional regulator by
binding RNA or RNA-binding proteins (RBPs) or even
encoding proteins under certain conditions to regulate
transcription and translation [127-130]. circRNA can act as
miRNA sponges [131, 132]. circRNA can be translated in a
cap-independent manner [130]. In addition, circRNA can
interact with proteins through a variety of mechanisms,
such as affecting protein-protein associations, blocking or
facilitating the binding of proteins and other molecules,
recruitment, forming complexes with proteins and nucleic
acids to regulate mRNA stability and translation processes,
and transporting and reassigning proteins to their local-
ization in the cell [130]. For example, hsa_circ_001783 can
act as a miRNA sponge to target and inhibit miR-200c-3p,
thereby enhancing the expression of miR-200c-3p’s target
genes zinc finger E-box binding homeobox 1 (ZEBI),
zinc finger E-box binding homeobox 2 (ZEB2), and ETS
proto-oncogene 1 (ETSI) and promoting breast cancer
progression [133].

Similar to the two previously mentioned noncoding
RNAs, circRNAs are also involved in the development
and progression of cancer. circRNA are involved in tumor
invasion and metastasis, angiogenesis, and immune
regulation. For example, hsa_circ_0003204 promotes pro-
liferation and invasion of cervical cancer cells by activating
the MAPK signaling pathway [134]. circ3823 binds to and
inhibits miR-30c-5p and deregulates miR-30c-5p from its
target transcription factor 7 (TCF7), thereby upregulating
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Myc and cyclin D1 (CCND1) and thereby promoting pro-
liferation, invasion, and angiogenesis in CRC cells [135].
circUHRF1 produced by HCC cells promotes immuno-
suppression by degrading miR-449c-5p to upregulate
TIM-3 expression, leading to reduced tumor necrosis
factor-a (TNF-a) and Interferon-gamma (IFN-y) secretion
by NK cells [136]. Of course, some circRNAs exist that
inhibit tumor progression. circRNA_0005075 can inhibit
gastric cancer cell growth and metastasis by promoting
the function of miR-431, upregulating p53 expression, and
thus inhibiting epithelial mesenchymal transition [137].

3.2 | Histone modification

DNA is packaged in the form of chromatin in eukaryotic
cells with nucleosomes as functional units, each of which
is composed of an octamer of four core histones (H3, H4,
H2A, and H2B). The core of the nucleosome is formed
by globular regions of histones, while the N-terminal tail
protrudes from the nucleosome and is enhanced by vari-
ous post-translational modifications (PTMs). Histone tails
are altered by a large group of non-histone chromatin-
related proteins called chromatin-modifying enzymes.
These enzymes are present in cells as multicomponent pro-
tein complexes that are regularly recruited to chromatin
along with DNA-binding transcription factors [138]. Many
covalent PTMS in histone and DNA-related regions play a
key role in genomic function by binding specific transcrip-
tion factors and coactivators and altering the structural
properties of chromatin [139]. Based on their functions,
chromatin-modifying enzymes are classified into four
groups: acetylated histone acetyltransferases (HAT), his-
tone deacetylase (HDAC), HMT, and histone demethylase
(HDM) [140]. The resulting PTM can act in concert or
alone to promote chromatin-mediated activation or repres-
sion of inflammatory cytokine gene expression [141], cell
cycle arrest [142], senescence [143], apoptosis [144], growth
factors [145], and antioxidants [146].

Histone methylation, which occurs at the lysine residue
of histone H3 or H4, is one of the most common histone
modifications. This modification is mediated by HMT
using S-adenosylmethionine (SAM) as the substrate [147].
Histone methylation can be divided into monomethylation
(mel), dimethylation (me2), and trimethylation (me3).
In general, methylation of H3K4, H3K36, and H3K79 is
thought to promote gene expression, whereas methylation
of H3K9, H3K27, and H4K20 is inversely associated with
gene silencing expression and chromatin condensation
[148].

Acetylation of histones is considered a marker of active
chromatin. The acetylation state of chromatin is a dynamic
process that is regulated by HAT and HDAC. Acetylated

histone lysine side chains no longer carry a positive charge,
thus losing the ability to bind tightly to DNA and facilitat-
ing the binding of transcriptional regulators [149]. H3 and
H4 are the main histones modified by proteases. There are
many lysine residues in histones that can be acetylated,
including H3K9, H3K14, H3K18, H3K23, H3K27, etc.
Aberrant histone lysine methylation patterns have been
identified in various human cancers. For example, low
levels of H3K4me2 correlated with low survival rates
in both lung and kidney cancers [150] and were also
associated with adverse prognosis in non-small cell lung
carcinoma (NSCLC) [151], HCC [152], and breast cancer
[153] Moreover, aberrant histone lysine acetylation pat-
terns have been reported as a common hallmark of human
cancer. Increased expression of HDAC family proteins has
been observed in many cancers, including B cell acute
lymphoblastic leukemia (ALL) and T cell ALL [154].

3.3 | DNA methylation
DNA methylation is the dominant epigenetic marker.
5-methylcytosine (5SmC) was the primary and extensive
DNA covalent modification [155]. In the mammalian
genome, 5mC exists mostly in the CpG dinucleotide
context, with 70%-80% of CpGs being methylated, while
CpG-rich regions, known as CpG islands (CGIs), are
present in more than half of the vertebrate genes [156].
Mammalian gene CGIs transcription start site methylation
represses gene transcription. In mammals, DNA methyl-
transferases, include DNA methyltransferase 1 (DNMT1),
DNA methyltransferase 3 alpha (DNMT3A), and DNA
methyltransferase 3 beta (DNMT3B), of which DNMT3A
and DNMT3B are necessary for the maintenance of
methylation [157]. 5mC can be demethylated by either
passive or active processes. Passive DNA demethylation is
thought to deplete 5-hydroxymethylcytosine through DNA
replication [158]. Active DNA demethylation in mammals
is achieved through ten-eleven translocation (TET)-
mediated oxidation of 5mC to 5-hydroxymethylcytosine,
5-formylcytosine (5fC), and 5-carboxylcytosine (5caC),
followed by replication-dependent dilution of oxidized
5mC or thymine DNA glycosylase-mediated excision of
5fC and 5caC coupled with base excision repair [159].
Tumor cells are characterized by a different methylome
from that of normal cells. The methylation status of
immune genes influences the tumor immune response
in the TME and correlates with the density of tumor-
infiltrating lymphocytes [160]. Investigation of colon
cancer-derived tumor-infiltrating lymphocytes demon-
strated that hypermethylation of the IFN-y gene can
prevent the maturation of T helper cell 1 (Thl) lympho-
cytes [161]. This may be the epigenetic mechanism for
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TABLE 1 Mechanisms of epigenetic therapy targeting immunosuppressive cells.
Year of
Title publication = Main findings
Targeting the epigenetic regulation of 2020

antitumor immunity [163]

Cancer epigenetics, tumor immunity, and 2020
Immunotherapy [164]

Epigenetic modulation of antitumor 2021
immunity for improved cancer
immunotherapy [165]

Histone deacetylase inhibitors as 2017
anticancer drugs [166]

Tumor microenvironmental signals 2022
reshape chromatin landscapes to limit
the functional potential of exhausted T
cells [167]

Targeting pancreatic cancer immune 2022
evasion by inhibiting histone
deacetylases [168]

Lysine acetylation/deacetylation 2022
modification of immune-related
molecules in cancer immunotherapy
[169]

1. MDSC: Reducing the frequency of MDSC in tumoral tissues with DNA

611

methyltransferase inhibitors may improve the efficacy of immune therapy
responses in the context of immune checkpoint blockade or adoptive cell

therapy.

2. Treg cell: Targeting P300/CBP and TIP60 acetylation-dependent
regulation of FOXP3 expression may affect the differentiation of T cells
into Treg cells.

The epigenetic inhibitors DNMT and KMT6A (EZH2) both directly inhibit
the expression of Thil-type chemokines, such as CXCL9 and CXCL10,
which are essential for T-cell recruitment and infiltration.

1. MDSC: The epigenetic component p66a regulates MDSC by modifying

STAT3 activity. Inhibition of EZH126 by GSK2 has been shown to suppress

antitumor immunity by enhancing MDSC content in tumors.
2. Treg: Phosphoric acid-modified vitamin C induces hypomethylation of
the FOXP3 gene promoter region in Treg cells.
Treg cell: Inhibition of HDACS activates naive T cells, while class I HDAC
inhibitors enhance Treg number and function.

Terminal depletion of T cells: Enforced expression of H3K27 histone

demethylase Kdméb can restore the antitumor effects of depleted T cells.

Treg cell: The HDAC inhibitor Entinostat reduced the ratio of Treg cells in
tumor tissues.

1. Treg cell: Low-dose HDAC inhibitors can regulate the expression of

CTLA-4, promote the natural generation of FOXP3 Treg cells, and restore

the suppressive function of Treg cells by regulating histone H3K27
acetylation in ITP.

2. MDSC: Etinostat, a class I HDAC inhibitor, contributes to the positive
antitumor effect of PD-1 inhibitors in lung and renal-cell carcinoma
syngeneic mouse models by inhibiting the tumor suppressive effect of
MDSC cells.

Abbreviations: CXCL, C-X-C motif chemokine ligand; DNMT, DNA methyltransferase; FOXP3, Forkhead box protein P3; GSK2, glycogen synthase kinase 2;
HDAC, histone deacetylase; ITP, immune thrombocytopenia; KMT6A (EZH2), Enhancer of zeste homologue 2; MDSC, Myeloid-derived suppressor cells; TAM.

Tumor-associated macrophage; TIP, Tat-Interactive Protein; Treg, Regulatory T cells.

tumor-induced immunosuppression. Meanwhile, DNA
methylation alterations implicate epigenetic modulation
in precision immunotherapy. Jung et al. [162] reported
that low DNA methylation is expected to decrease
tumor immunity and undermine the clinical benefit of
immunotherapy. All of the above has proven that DNA
methylation has a deep relationship with tumors.

4 | MECHANISMS IN ISCs

Some existing studies have reported the effects of epige-
netic therapeutic strategies on immunosuppressive cells
(Table 1), and the mechanism of epigenetic modification
on immunosuppressive cells will be introduced in detail
below (Figure 3).

4.1 | Noncoding RNA in ISCs

411 | The roles of Noncoding RNA in TAM
Non-coding RNAs can affect the occurrence and develop-
ment of tumors by regulating the function and biological
behavior of TAMs.(Table 2) Tumor cell-derived IncRNAs,
circRNAs, and miRNAs function as oncogenes by regu-
lating macrophage polarization and immunosuppression,
promoting tumor cell proliferation, cell cycle, invasion,
and metastasis [170].

The study of Lai et al. [188] found that IncRNA-NBR2
can promote tumor progression by regulating TAM M2
polarization. Zong et al. [191] found that knockdown of
LncRNA SNHG1 inhibited M2 macrophage polarization by
inhibiting Signal transducer and activator of transcription
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6 (STAT6) phosphorylation, suggesting that IncRNA-
SNHG1 could promote breast cancer progression by
affecting TAMSs. Another study showed that LincRNA-p21
can directly target p53 or indirectly target p53 through an
hnRNP-K-dependent mechanism, thereby promoting the
maintenance of the TAM phenotype in breast cancer tis-
sues [198]. LncRNA-p21 knockdown significantly reversed
the functional phenotype of TAM and enhanced its antitu-
mor ability [189]. Xie et al. [182] showed that circSMARCC1
disrupts the crosstalk between TAM and prostate cancer
(PCa) cells via the CCL20-CCR6 axis, including TAM
recruitment and mediates M2 macrophage polarization,
thereby promoting PCa progression. Studies have shown
that the CCL20-CCR6 axis can promote tumor progression
by stimulating the release of inflammatory modulators
from TAM [199]. Zhu et al. [200] found that knockdown
of circMERTK resulted in attenuated apoptosis of CD8*
T cells in a co-culture assay, suggesting that circMENTK
may have an effect on the immunosuppressive activity of
TAM-like cells. TAM-like cells can exert immunosuppres-
sive activity through the circMERTK/miR-125a-3p/IL-10
axis, suggesting that circMERTK may play an important
role in TAM activation and may serve as a potential
therapeutic target for CRC [183]. Zhou et al. [171] showed
that the miR-285p-interleukin 34 (IL-34) macrophage
feedback loop regulates HCC metastasis. 1L-34 may
promote TAM polarization and infiltration through
IL34/colony stimulating factor-1 receptor (CSF-1R) [201].
Zhao et al. [202] showed that Xist regulates the expression
of CCAAT/enhancer-binding protein alph (C/EBPa) and
Kruppel-like factor 6 (KLF6) by competing with miR-101,
in which KLF6 can inhibit M2 polarization by reduc-
ing the expression of peroxisome proliferator-activated
receptor ¥y (PPARy), and C/EBPa and its target gene SPI1
participate in the activation of Toll-like receptor (TLR)
ligand-induced M1 macrophages. This mediates the polar-
ization of macrophages and affects the proliferation and
migration of breast and ovarian cancer cells [190]. Another
study showed that the miR-144/miR-451a cluster promotes

macrophage M1 polarization and antitumor activity by tar-
geting hepatocyte growth factor (HGF) and macrophage
migration inhibitory factor (MIF) [172]. HGF regulates
AMPK phosphorylation through upstream regulators
of Ca?*/calmodulin-dependent protein kinase kinase
(CaMKK§p), and promotes macrophage M2 polarization
through HGF/c-met signaling pathway [203]. miR-934
induces M2 macrophage polarization by downregulating
PTEN expression and activating the PI3K/AKT signaling
pathway, and polarized macrophages can also promote
the formation of M2 macrophages through a C-X-C
motif chemokine ligand 13 (CXCL13)/C-X-C chemokine
receptor type 5 (CXCR5)/NFxB/p65/miR-934 positive
feedback loop by secreting CXCL13 liver metastases from
rectal cancer [173]. Zhou et al. [176] found that tumor cells
induce decreased expression of mir-382 in TAMs, thereby
reducing the downstream inhibition of Peroxisome
proliferator-activated receptor y coactivator 1o (PGC-1a)
to further induce M2 polarization, thereby enhancing the
ability of TAMs to promote EMT and distant metastasis of
breast cancer cells. PGC-1a activates PPARy, which plays
an important role in TAM polarization. This may be the
mechanism that makes it work.

In addition, TAM-derived IncRNAs also promote tumor
proliferation, metastasis, and drug resistance [204]. Stud-
ies have shown that TAM-derived exosomes containing
IncCRNDE or miR-21 can enhance the resistance of gastric
cancer cells to cisplatin chemotherapy. The mechanism
may be that the exosome transfer of miR-21 leads to the
downregulation of PTEN, the increase of AKT activation
and the up-regulation of Bcl-2, a gene related to apoptosis
[174, 193]. The vesicular miRNAs produced by TAM also
promote the malignant behavior of tumor cells [205].

As far as the current research goes, there are a variety of
non-coding RNAs that can be used as tumor markers for
tumor diagnosis and prognosis, and are also good targets
for tumor treatment by converting tumors from cold to
hot. For example, IncRNA, as an important regulatory
substance, can also be used as tumor markers, such as

FIGURE 3

The mechanism of epigenetic strategies in ISCs. (A) The pathway of non-coding RNA acting between tumor cells and ISCs.

(B) The mechanism of histone modification in ISC. (C) The mechanism of DNA methylation in ISC.Epigenetics refers to heritable changes in

cellular phenotype independent of DNA sequence alterations, with major regulators including DNA methylation, histone modifications, and

non-coding RNAs. Since epigenetics plays an important role in the process of ISCs affecting tumors, therapeutic strategies implementing
epigenetic modulating drugs are expected to significantly impact the TME through inhibition of ISCs (such as MDSCs, Treg cell and so on)
resulting in turning “cold” to “hot” and increase the sensibility of tumor to immunotherapy. Abbreviations: ARGI, arginase 1; CBP,
CREB-binding protein; DNMT1, DNA methyltransferase 1; DNMT3B, DNA methyltransferase 3B; Foxp3, forkhead box protein P3; H3K4me3,
histone H3 lysine 4 trimethylation; HAT, histone acetyltransferases; HDACI, histone deacetylase inhibitor; iNOS, inducible nitric oxide

sythase; IRFS8, interferon regulatory factor 8; ISC, immune suppressive cell; KLF4, Kruppel-like factor 4; MDSC, myeloid-derived suppressor

cells; Pparg, peroxisome proliferator-activated receptor gamma; SOCSI, suppressor of cytokine signaling 1; STAT3, signal transducer and

activator of transcription 3; TAM, tumor-associated macrophage; TET2, tet methylcytosine dioxygenase 2; TET3, tet methylcytosine
dioxygenase 3; TGF-f1, transforming growth factor beta-1; TIM-3, T cell immunoglobulin domain and mucin domain-3; TME, tumor

microenvironment; TNFR2, tumor necrosis factor receptor 2; Treg, regulatory T.
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CR936218.2, SREBF2-AS1, TMEM220-AS1, LINC00205,
LUCAT, AL049840.2, AL139260.1, DCST1-AS1, INC01232,
etc [206]. For the treatment of TAM epigenetics, Xu et al.
[207] showed that SRY-related high-mobility-group box 4
(SOX4) is a direct target gene of miR-204-5p in TAMRSs.
SOX4 silencing significantly inhibited the proliferation,
migration, and clone formation of TAMRs. The expression
of Inc-42060 and SOX4 in canine mammary gland tumours
(CMGT) tissues was significantly positively correlated.
Lnc-42060 positively regulates the expression of SOX4 at
both mRNA and protein levels in TAMRs. Further cell
biology experiments showed that lnc-42060 promoted
drug resistance, proliferation, and metastasis of TAMRs
through the miR-204-5p/SOX4 axis. That is, 1Inc-42060
and miR-204-5p were regarded as ceRNAs regulating
SOX4 expression. Certain non-coding RNAs, such as
miR-122-5p, can increase radiation sensitivity and may
amplify radiation damage during therapy [208, 209]. Other
adverse effects are still being explored.

Furthermore, exosomal miR-21 targeting TAM may be
a promising adjuvant therapy strategy for gastric cancer
patients, especially those with cisplatin-resistant gastric
carcinoma (GC) [174]. Currently, there exist diverse well-
established approaches for RNA delivery, including lipid
nanoparticles and other techniques, in addition to the
aforementioned exosomes [210]. Similarly, the delivery
of non-coding RNA can also adopt a similar route. The
use of exosomes to deliver miRNAs has been achieved in
many fields. Studies have shown that the use of exosomes
to encapsulate miRNA let-7a and inject it can target
breast cancer cells and exert anti-tumor effects [211].
Another study showed that the use of mesenchymal stem
cell-derived exosomes can deliver LNA-antimiR-142-3p
to breast cancer stem cells to reduce their tumorigenicity
[212]. Liposome particles can also serve as carriers for
non-coding RNA. Lipid-like nanoparticles (LNPs) have
been shown to deliver small interfering RNA (siRNA) to
muscle cells, liver cells, and neurons [213]. In addition to
these, some new methods are gradually being discovered.
It has been found that miR-29b-5p can be delivered by
stem cell-homing hydrogel to inhibit the progression of
arthritis and promote cartilage repair in rats [214].

4.1.2 | Therolesof noncoding RNA in MDSCs
Epigenetic modifications can lead to the remodeling of
MDSC characteristics, thereby regulating their antitumor
immunity and the ability to promote tumor metastasis
(Table 3). The inhibitory effect of MDSC on tumor immu-
nity is regulated by miRNAs produced by various tumor
cells [215]. Zhang et al. [216] found that both miR-17-
5p and miR-20a could reduce the immunosuppressive

ability of MDSCs by downregulating STAT3 expression.
STAT3-mediated SI00A9 protein regulates DC differen-
tiation and MDSC infiltration in cancer [216]. Noman
et al. [217] demonstrated that hypoxia inducible factor-
1 (HIF-1a)-induced overexpression of miR-210 enhanced
the tumor-promoting function of MDSCs by increasing
arginase activity and NO production. Overexpression of
miR-210 enhances MDSC-mediated T cell suppression in
vivo. miR-210 regulates the expression levels of arginase-
1 (Argl), Interleukin (IL-16), and C-X-C motif chemokine
ligand 12 (CXCLI12) in MDSC, thereby affecting T cell
function [217]. Tian et al. [218] found that inhibition of
miR-9 promoted the differentiation of MDSCs and signif-
icantly reduced their immunosuppressive function, while
overexpression of miR-9 significantly enhanced the func-
tion of MDSCs in in vitro studies. miR-9 enables MDSC
differentiation by targeting runt-associated transcription
factor 1 (Runx1), an essential transcription factor that reg-
ulates MDSC differentiation and function. Zhang et al.
[219] showed that miR-21a in Lewis lung cancer(LLC)
exosomes(exo) is able to target programmed cell death
4 (PDCD4) through IL-6 and phosphorylation of the
STAT3 signaling pathway), thereby promoting functional
expansion of MDSCs, which in turn will prevent the acti-
vation of cytotoxic CD8" T cells, thereby promoting tumor
growth. Wang et al. [220] found that miR-34a could inhibit
the transformation of tumor cells into CD11b*Grl* cells
with immunosuppressive function by reducing TGF-f and
IL-10. Another study found that miRNA deletion may pro-
mote the migration ability of MDSCs and their ability
to promote tumor angiogenesis [221] These experimen-
tal results also indicate that the regulation of miRNAs on
MDSCs is not always positive.

In addition to miRNAs, IncRNAs expressed in tumor tis-
sues are also involved in the regulation of MDSCs. Zheng
et al. [230] reported that HIF-1a upregulated the expres-
sion of IncRNA Pvtl in granulocytic-MDSCs (G-MDSCs)
under hypoxia. Pvtl knockdown reduced the levels of
Argl and ROS in G-MDSCs and restored antitumor T cell
responses. Targeting Pvtl attenuates G-MDSC-mediated
immunosuppression. This could be further confirmed as
a potential therapeutic strategy. Tian et al. [229] found
that runt-related transcription factor 1 overlapping RNA
(RUNXOR) knockdown reduced the expression of arginase
Argl in MDSCs, indicating that RUNXOR was signifi-
cantly associated with MDSC-induced immunosuppres-
sion in lung cancer patients and may be a target for
anti-tumor immunotherapy. Tian et al. [227] also con-
firmed that the IncRNA HOTAIRM1 can enhance the
expression of homeo box Al (HOXA1) in MDSCs and that
high levels of HOXAI (the target gene of HOX transcript
antisense RNA [HOTAIR1]) can delay tumor progression
and enhance anti-tumor immune responses by reducing
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TABLE 3 Non-coding RNAs affecting MDSC.

Noncoding
RNAs
miR-21
miR-21a

miR-1246

miR-155

miRNA-143-3p

miR-210

miR-9

CircMID1

HOTAIRM1

LncRNA

MALATI1
RUNXOR
Pvtl

LncRNA
AK036396

Lnc-C/EBPS

Origin cell
CAF

LLC

Glioma cell

MDSC

G-MDSC

MDSC

MDSC

PCa cell

MDSC

PBMC

MDSC

MDSC

PMN-MDSC

MDSC

Expression in
tumor cell

Upregulated

Upregulated

Upregulated

Downregulated

Upregulated

Upregulated

Upregulated

Upregulated

Downregulated

Upregulated

Upregulated

Upregulated

Upregulated

Upregulated

Way of
crosstalk

Exosome

Exosome

Exosome

N/A

Exosome

Cytokine

Chemokine

Exosome

N/A

N/A

N/A

N/A

N/A

N/A

617

MMUNICATIONS

Role in tumor cells or immunosuppressive cells

Autocrine activation of STAT3 by IL-6 promotes the
generation of M-MDSCs.

Induction of MDSC expansion by downregulation of
PDCDA4.

Drives differentiation and activation of MDSCs in a
DUSP3/ERK-dependent manner.

Downregulated miR-155 targets and upregulates the
expression of HIF-1a, thereby upregulating the
expression of CXCL1, CXCL3, and CXCLS in
MDSCs, contributing to enhanced recruitment of
MDSCs to tumors.

targeting the 3’-UTR region, activation of the
PI3K/Akt signaling pathway by inhibiting the
transcription of ITM2B to promote proliferation.

Increase arginase activity and nitric oxide production,
downregulate the expression of IL-16 or CXCL12,
thereby enhancing its tumor-promoting effect.

Target the runt-related transcription factor 1, levels of
CDllc, F4/80, CD40, CD80, CD86, and MHC class
II molecules were reduced. Arginase activity as
well as iNOS and ROS levels were also enhanced.

Exosome S100A9 from MDSC promotes the
expression of circMID1 in PC3 cells, and circMID1
acts as a ceRNA to regulate the expression of MID1
through miR-506-3p.

HOTAIRMI can enhance the expression of HOXALI in
MDSCs, and the high level of HOXALI, the target
gene of HOTAIRM1, can delay tumor progression
and enhance anti-tumor immune response by
down-regulating the immunosuppression of
MDSCs.

Directly regulates the proliferation of MDSCs and
increases their ARG1 expression.

Down-regulate RUNX1 expression; down-regulate
ARGI expression.

Elevated ARG1 and ROS levels in G-MDSCs
suppressed antitumor T cell responses.

Enhances the stability of ficolin B, thereby facilitating
its complex formation with mannose-binding
lectin-associated serine proteases and activation of
complement through the lectin pathway in
granulocytes. Activation of complement can
promote MDSCs to produce ROS and ARGI, and
accelerate the migration of MDSCs to tumor site
559.

Regulate a series of target transcripts such as ARG,
NOS2, NOX2, COX2, IL4il, etc.

To control the immunosuppressive function and
differentiation of MDSCs.

Lnc-C/EBPB may bind to C/EBPS and WDRS5 to
promote the differentiation of PMN-MDSCs but
inhibit the differentiation of Mo-MDSCs.

Reference
[222, 223]

[219]

[224]

[221, 223]

[225]

[217]

[218]

[226]

[227]

[228]

[229]

[230]

[231]

[232, 233]

(Continues)
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TABLE 3 (Continued)
Noncoding Expressionin Way of
RNAs Origin cell tumor cell crosstalk Role in tumor cells or immunosuppressive cells Reference
LncRNA MDSC Upregulated N/A RNCR3 may act as a ceRNA to promote the [234]
RNCR3 expression of Chop by infiltrating miR-185-5p,
increasing the levels of ARG1 and iNOS; regulating
the level of KLF2 in endothelial cells.
LINC00978 PMN-MDSC Downregulated N/A Reduction of miR-4435-2HG enhances the [235]
(MIR4435- immunosuppressive ability of PMN-MDSCs by
2HG) interfering with fatty acid metabolism.
Lnc57Rik MDSC Upregulated N/A Lnc57Rik can not only bind with the C/EBPDb isoform [235]

liver-enriched activator protein to activate C/EBPb,
but also with the methyltransferase WD
repeat-containing protein 5 that enables the
enrichment of histone H3 trimethylated lysine 4
marks on the promoter regions of ARG1, NOS2,
NOX2, and COX2, eventually resulting in their
transcriptional activation.

Abbreviations: ARG1, Arginase-1; COX2, cyclooxygenase-2; WD, tryptophan-aspartic acid; DUSP3, dual specificity protein phosphatase 3; ERK, extracellular signal-
regulated kinase; HOXA1, Homeo box Al; iNOS, inducible nitric oxide synthase; ITM2B, integral membrane protein 2B; KLF2, Kruppel-like factor; MDSC, Myeloid-
derived suppressor cells; N/A, not applicable; NOX2, NADPH-Oxidase 2; PDCD4, Programmed cell death protein 4; ROS, reactive oxygen species; RUNX1, Runt-
related transcription factor 1; STAT3, Signal Transducer and Activator of Transcription 3; UTR, Untranslated Region.

the immunosuppressive ability of MDSCs, indicating that
HOTAIRM1/HOXA1 downregulates the immunosuppres-
sive function of MDSCs and may be a potential therapeutic
target for lung cancer. The study by Zhou et al. [228] found
that the IncRNA MALAT1 negatively regulates MDSCs and
isreduced in peripheral blood mononuclear cells (PBMCs)
of lung cancer patients.

In addition, it was found that cancer-associated fibrob-
lasts (CAFs) induce MDSC production through activation
of STAT3 signaling, which is achieved through secretion
of IL-6 and exosome miR-21 by CAFs, thereby increasing
the risk of cisplatin resistance in esophageal cancer [222].
Another study showed that G-MDSCs can also derive exo-
somal miR-143-3p, which can counteract lung cancer cells
and inhibit the transcription of Integral Membrane Protein
2B (ITM2B) to activate the PI3K/AKT signaling pathway to
enhance proliferation [225].

Currently, there are few studies on the epigenetic ther-
apy of MDSC. Some studies have shown that Inc-RNA
which targets STAT3 can reduce the infiltration of M-
MDSCs, restore drug sensitivity, and further induce tumor
regression [222].

413 | The roles of noncoding RNA in Tregs

Noncoding RNAs produced by tumor cells can affect
the function of Treg cells through different pathways,
thereby affecting the occurrence and development of
tumors (Table 4). miR-155, miR-146a, miR-17-92, and other
miRNA molecules are involved in the development and

function of Treg cells [236]. Yao et al. [237] and Zhang
et al. [238] found that miR-155 was involved in the occur-
rence and development of cervical cancer by inhibiting
suppressor of cytokine signal 1 (SOSC1) expression and
inducing a Th17/Treg imbalance. Zheng et al. [239] found
that gastrectomy altered the balance of Th17/Treg cells,
accompanied by an increase in PD-1/PD-L1 expression
and a decrease in miR-21 expression, resulting in an
increase in the proportion of Th17 cells but a decrease in
the proportion of Treg cells, which suggested that miR-21
could be used as a predictor for the postoperative outcome
of gastric cancer. LncRNA also has regulatory effects on
the function of Treg cells. Yu et al. [240] found that the low
expression of IncRNA FENDRR and GADD45B and the
high expression of miR-423-5p in HCC not only reduced
cell proliferation and tumenicity but also promoted apop-
tosis of HCC cells, thus regulating the Tregs-mediated
immune escape of HCC. IncRNA FENDRR inhibited
Treg-mediated escape of HCC cell immunity through
sponge miR-423-5p upregulation of GADD45B

In addition, not only ncRNAs produced by tumor
cells can affect Treg cell function, but also exosomal
miR-29a-3p and miR-21-5p secreted by TAMs can directly
inhibit STAT3 and regulate Treg/Thl7 cells, leading to
an imbalance [253]. For the treatment of Tregs, Yin et al.
[243] demonstrated that tumor-secreted miR-215 induced
Treg-mediated immunosuppression by microvesicle (MV)
delivery of functional anti-miR-214 (ASOs) into CD4%
T cells is a new and effective cancer treatments. Zhou
et al. [253] found that TAM-derived exosomes transferred
STAT3-targeting miRNAs to T cells and regulated T cell
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subset polarization, resulting in a Treg/Thl7 imbalance
that promoted tumor progression. Targeting exosomes or
these miRNAs could be a way to treat cancer.

4.2 | Histone modification in ISCs

4.2.1 | Histone modifications in TAM

There is not enough evidence to prove that histone
deacetylase inhibitor (HDACI) is closely related to TAM.
Meredith et al.[254] found that after the addition of HDACi
to the original treatment of ovarian cancer, the number of
infiltrated TAM was significantly reduced, and the tumor
load was further reduced. This suggests that HDACi may
inhibit tumor development by reducing TAM invasion.
However, we have not found direct evidence of how
HDACI affects TAM, which may be the focus of future
research.

4.2.2 | Histone modifications in MDSCs
Studies have shown that histone modifications contribute
to the accumulation and function of MDSCs [255-257].
Analysis of CRC tissues revealed that HDAC related genes
were up-regulated in tumor-infiltrating immature-MDSC
(I-MDSC), while HAT-related genes were down-regulated
in CRC patients. In contrast, HDAC-related genes were
downregulated in tumor-infiltrating PMN-MDSC [257].
All of the above evidence points to the importance of
HDAC activation in mediating MDSC inhibitory function
and chemotaxis.

In addition, histone methylation is also involved in the
regulation of MDSC function. Inducible nitric oxide syn-
thase (iNOS) is a key mediator of the inhibitory function of
M-MDSC. HMT SETD1B mediates the methylation of his-
tone H3 lysine 4 (H3K4Me3) at the nitric oxide synthase
2 (NOS2) promoter to stimulate the expression of iNOS
in tumor-derived MDSC and exerts the inhibitory effect
of MDSC [258]. At the same time, osteopontin (OPN) is
highly expressed in M-MDSC, and OPN is closely related
to the poor prognosis of human pancreatic cancer. The WD
repeat domain 5 (WDR5)-H3K4me3 epigenetic axis can
inhibit pancreatic tumor immune escape by blocking OPN
expression in M-MDSC. These results indicate that histone
methylation affects tumor response to immunotherapy by
regulating the suppressive effect of MDSC [259].

HDACI can exert a range of effects on MDSCs [165].
Some studies showed that several HDACI delete or inhibit
MDSCs in tumors. Wang et al. [260] showed that HDACi
SAHA eliminated MDSCs in a breast carcinoma model by

inducing apoptosis of Grl cells. This is mainly due to the
increase in intracellular ROS content caused by HDACI.
Besides, HDACi CG-745 can also reduce MDSCs content,
thereby promoting anti-tumor immunity within the TME
of CT26 colon cancer in mice [261]. In another study involv-
ing epigenetic therapy, treatment with HDACI resulted in
significant reductions in tumor-associated MDSCs [262].

4.2.3 | Histone modifications in Treg cells
Histone modification is also a key determinant of Treg
cell development and function. One strategy to epigeneti-
cally regulate Treg cell function by altering the acetylation
status may be to target P300/CBP and TIP60 acetylation-
dependent regulation of FOXP3 expression [263]. Small
molecules targeting the P300/CBP bromodomain can
reduce the acetylation level of FOXP3 and affect the dif-
ferentiation of Treg cells, suggesting that targeting the
P300/CBP bromodomain may be a potential target for
alleviating Treg mediated immunosuppression. However,
although P300/CBP bromodomain inhibition can effec-
tively reduce the differentiation of pTreg cells, this strategy
is not effective for tTreg cells and therefore does not affect
the number of Treg cells that are dominated by tTreg cells
in the TME [264]. This lack of efficacy may be related to
the use of different transcription factors by tTreg cells and
pTreg cells. In addition, Tao et al. [265] found that HDACi
treatment increased Treg expression of CTLA-4, GITR, and
PD-1, leading to an increase in the number of Treg cells
in vivo. However, other HDACi may also have immunos-
timulatory effects. Class I-specific HDACI (entinostat) can
down-regulate FOXP3 transcription/expression in Tregs
when applied at low doses, leading to the loss of Treg sup-
pressive function without affecting the intrinsic activity of
T effector cells [266]. All in all, it refers to the fact that his-
tone modifications did influence the function of Treg cells
in a good or bad sense.

Inhibition of histone acetylation is one of the first
therapeutic strategies to be applied to epigenetics. We
concluded that the anti-tumor effects of HDACi are mainly
through regulating the release of inflammatory cytokines,
the expression of cell signal receptors, and the expression
of NF-xB, JAK2/STAT3 and other signal axes [267, 268]. At
present, HDACIi has not been studied in the treatment of
Treg, but it may be a future treatment strategy. Diarrhea,
myelosuppression and cardiovascular toxicity are the
main side effects of HDACI. The existing drugs still have
problems, such as poor pharmacokinetics, off-target bind-
ing and drug resistance. At present, the research direction
of HDAC: is ZBG-free HDACI, dual-target HDACIi, and
HDACIi combining nano and photosensitive materials,
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which can solve the problems of side effects and drug
effects to a certain extent [269, 270].

4.3 | DNA methylation in ISCs

431 | DNA methylation in TAM

The DNMT family and its inhibitors in inflammation and
tumors are interesting and worthy of consideration. In a
mouse model of ovarian cancer, an experiment revealed
that the combined administration of a DNMT inhibitor
and an ornithine decarboxylase inhibitor led to a notable
reduction in immunosuppressive cells, particularly M2-
polarized macrophages, and a concurrent elevation in
tumor-killing M1 macrophages compared to the adminis-
tration of either drug alone [271, 272]. Notably, this effect
was found to be attenuated upon the administration of
an antibody targeting the CSF-1R. In this process, DNMT
inhibitors may induce a polarity shift in macrophages
by eliciting an interferon response and promoting IFN-y
production, thereby modulating the immune microen-
vironment. This experiment underscores the potential
synergistic effects of combining epigenetic modulators for
therapeutic interventions in ovarian cancer.

Tet methylcytosine dioxygenase 2 (TET2), a protein reg-
ulating the DNA methylation landscape, may influence the
function of TAM. Contrary to the recognized role of TET2
as a tumor suppressor, Pan et al. [273] found that TET2
expression is increased in intertumoral myeloid cells both
in mouse models of melanoma and in melanoma patients.
Ablation of TET2 in myeloid cells suppressed melanoma
growth in vivo and shifted the immunosuppressive gene
expression program in TAM to a proinflammatory one,
with a concomitant reduction of the immunosuppressive
function. This resulted in increased numbers of effector
T cells in the tumor, and T cell depletion abolished the
reduced tumor growth observed upon myeloid-specific
deletion of TET2. The result means that TET2 may medi-
ate immunosuppressive function of TAM and melanoma
tumor progression.

In addition, DNMTT1 has been shown to play crucial roles
in M1 activation by suppressing the expression of Kriippel-
like factor 4 (KLF4) and suppressor of cytokine signaling 1
(SOCS1), and DNMTI1 overexpression enhances the secre-
tion of proinflammatory cytokines, such as TNF-a and IL-6
[274, 275]. Similarly, a high level of DNMT3B promotes M1
polarization by methylating the promoter region of perox-
isome proliferator activated receptor y in murine adipose
tissue macrophages [276]. At present, the research on the
treatment direction of TAM by DNA methyltransferase
inhibitors (DNMTi) is still shallow, and new treatment
strategies are explored through in-depth research.

432 | DNA methylation in MDSCs

Among a host of immune checkpoints (ICs), IC ligands,
and immunosuppressive molecules implicated in MDSC
function, CGIs in the promoter regions of TGF-£1, TIM-3,
and Argl were highly unmethylated in MDSCs, suggesting
that DNA methylation is one of the key mechanisms
that regulate their expression [277]. Sasidharan et al
[278] found HDAC inactivation and DNA demethylation
mediate upregulation of genes involved in cell migra-
tion and recruitment of MDSCs in tumor-infiltrating
PMN-MDSCs. Rodriguez-Ubreva et al. [279] reported an
MDSC-specific DNMT3A upregulation, which is PGE2
dependent, that is required for the acquisition of their
immunosuppressive capacity, providing a novel target for
therapeutic intervention.

Administration of tetrahydrocannabinol (THC) into
wild-type mice caused increased methylation at the pro-
moter region of DNMT3A and DNMT3B in THC-induced
MDSCs, resulting in reduced expression of DNMT3A and
DNMT3B. At the same time, promoter region methylation
was decreased at arginase-1 and STAT3 in THC-induced
MDSCs, and consequently, these two genes were actively
transcribed in MDSCs [280]. The high expression of
arginase-1 and STAT3 resulted in increased tumor progres-
sion and suppressive function in MDSCs. It is noteworthy
that Interferon regulatory factor 8 (IRFS8) is frequently
silenced in the MDSCs of human cancer patients [281].
Under pathological conditions such as cancer, IRF8 is
silenced by its promoter DNA hypermethylation, result-
ing in the accumulation of PMN-MDSCs and M-MDSCs
in mice [281]. All of the above proves that epigenetics
influences the effect of MDSC on tumors.

Interestingly, MDSC can also regulate the function of
tumor cells via epigenetics. Ai et al. [282] study showed that
G-MDSCs triggered piRNA-823 expression, which then
promoted DNA methylation and increased the tumori-
genic potential of multiple myeloma stem cells (MMSCs).
Furthermore, silencing of piRNA-823 in MMSCs reduced
the stemness of MMSCs maintained by G-MDSCs, result-
ing in decreased tumor burden and angiogenesis in vivo.
Ibrahim et al. [283] reported that inflammation induces the
accumulation of MDSCs that express high levels of IL-10 in
colon tissue. IL-10 induces the activation of STAT3 which
directly binds to the DNMT1 and DNMT3B promoters to
activate their expression, resulting in DNA hypermethyla-
tion at the IRF8 promoter to silence IRF8 expression in
colon epithelial cells. Mice with Irf8 deleted in colonic
epithelial cells exhibit significantly higher inflammation-
induced tumor incidence [283]. Human colorectal carci-
nomas have significantly higher DNMT1 and DNMT3B
and lower IRF8 expression, and they exhibit significantly
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higher IRF8 promoter DNA methylation than normal
colon [283].

DNA methylation were the one of earliest epigenetic
targets for drug development. Epigenetic drugs such as
DNMT inhibitors have been approved by the Food and
Drug Administration (FDA) for clinical use in hemato-
logical malignancies and other cancers [284]. The tra-
ditional mechanism of the role of DNMT inhibitors is
similar to the traditional pathway of HDACi. However,
we also found that DNMTi may have influences on
tumors by affecting ISCs. Similar to HDACI, in one study,
DNMTi treatment was similarly found to result in a
significant reduction in tumor-associated MDSCs [262].
Decitabine, a DNMT inhibitor with immunomodulatory
effects, depletes MDSCs in vivo by inducing apoptosis at
relatively low doses [285]. Daurkin et al. [286] demon-
strated that tumor-infiltrated MDSCs can be enriched and
differentiated in the presence of Decitabine into mature
tumor-derived APCs whose function is opposite to MDSCs,
which means Decitabine can inhibit the development of
tumors by decreasing MDSCs.

Indeed, a major obstacle to epigenetic therapies is the
inability to target specific cells, particularly due to the lack
of specificity in targeting methyltransferases, which can
result in genome-wide hypomethylation [287]. The main
side effects of DNMT1 are bleeding, anemia and infection
due to myelosuppression (thrombocytopenia, anemia, and
granulocytopenia).

4.3.3 | DNA methylation in Treg cells
Epigenetics regulation by CpG methylation at specific gene
sites in T cells controls the differentiation of Treg cells
[288]. The methylation status of Treg specific demethylated
region (TSDR) is important because it allows or prevents
the binding of the methylation-sensitive transcription fac-
tor ETS1 which controls the stability of FOXP3 expression
in CD4" T cells [289]. Demethylation of the TDSR is
required for long-term FOXP3 maintenance and Treg cell
functional suppression [290].

A mass of studies showed that DNA methylation is
closely related to the function of Treg cells. Yue et al. [291]
show that during Treg cell development in the thymus,
TET proteins mediate the loss of 5mC in Treg cell-specific
hypomethylated regions, including “conserved non-coding
sequences” (CNS) CNSI and CNS2, and intronic cis-
regulatory elements in the FOXP3 locus. TET2 and TET3
are guardians of Treg cell stability and immune homeosta-
sis. The stability of FOXP3 expression is markedly compro-
mised in Treg cells from TET2/TET3 double-deficient mice
[292, 293]. Tseng et al. [294] also showed that TNF recep-
tor 2 (TNFR2) maintained FOXP3 expression in Treg cells

by restricting DNA methylation at the FOXP3 promoter,
although the mechanism by which TNFR2 regulates DNA
methylation is unclear. Moreover, IL-6 suppresses the
development and function of Tregs by enhancing the activ-
ity of DNMT1 and repressing FOXP3 expression [295, 296].

The therapeutic strategy of DNMTi for Treg remains to
be explored. Notably, it has been shown that DNMT1 is
crucial for a core genetic program maintaining Treg devel-
opment and function. In the Treg lineage, its deletion, but
not DNMT3A’s, leads to lethal autoimmunity. Therefore,
caution is warranted in considering the use of DNMT
inhibitors in developing Treg-based cellular therapies
[297].

5 | DISCUSSION

All of the above suggests that epigenetic drugs may also
work by affecting ISCs. We listed some of the FDA-
approved drugs (Table 5) and some of the clinical trials
currently underway (Table 6). However, these drugs are
not specific for ISCs, which means they have two sides:
they may promote the action of immune cells or ISCs. The
final result of affecting tumors may depend on the dose
of drugs. Meanwhile, the present epigenetic drugs are
not accurate to a certain site, and it is difficult to achieve
precise treatment. This means that existing epigenetic
drugs can have significant side effects. When the target
gene is suppressed, it may over active the remaining
cancer-related genes leading to genomic instability.
Besides, considering the cytotoxicity of these drugs and
the sensitivity of the reproductive system to them, special
groups should use with caution to prevent the occurrence
of fetal malformation and fertility decline.

Furthermore, there is still considerable room for fur-
ther development of drugs targeting other epigenetic
mechanisms, such as isocitrate dehydrogenase (IDH) pro-
tein inhibitors and enhancer of Zeste homolog2 (EZH2)
inhibitors, whose downstream products may affect histone
modification and other mechanisms that influence tumor
development. In addition to traditional drugs, some stud-
ies have shown that dietary therapy may also reverse tumor
progression by affecting epigenetic mechanisms. Ishak
Gabra et al. [323] found that dietary glutamine-derived
a-KG levels in vivo led to H3K4me3 hypomethylation,
thereby inhibiting epigenetically activated oncogenic path-
ways in melanoma. This may suggest that diet and drug
therapy can work together to increase efficacy through
epigenetic pathways. In general, this review summarized
the epigenetic mechanisms in ISCs affecting tumors and
hopes to find the specific biomarkers of ISCs, aiming at
promoting clinical drug development and increasing the
specificity of drugs.
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TABLE 5 Mechanism and clinical application of FDA-approved drugs.
Clinical
Related signaling pathways Related molecules applications
TNF-R1 and TRAIL-R2 (Genotoxic dsRNA/Type I AML; CMML; MDS
Carcinogen-Induced Bladder Cancer) [298].  Interferon [300].
IL-6 receptor-alpha and IL-6, phospho-STAT3
and Bcl-xl, NF-kappaB (multiple myeloma)
[299].
dsRNA/MDA5/MAVS/IRF7 (CRC-initiating
cells) [301].
pl6, THBSI, and cancer testis antigens [302].
TGFBI-MAPK (urothelial carcinoma) [303].

UBE2C (cervical cancer) [304]. Bcl-2 (lymphomas) CTCL
PI3K/AKkt (cervical cancer) [305]. [306].

SPCA2/Wnt/Ca?* (breast Cancer) [309]. TRAIL (ApolOL,

SAPK/INK, UPR, PI3K-AKT-mTOR, gx{is?o(;) [307] and
Wnt/B-catenin (PTCL) [310]. [308].

Type I Interferon (AML) [311].
JAK2/STAT3 (PanNET) [312].

Akt/FOXMI (gastric Cancer) [313].
APCL-Wnt/f-catenin (breast cancer) [314].

NOTCHI1-MYC (T-ALL) [315]. PTCL
c-MET-/HGF (NSCLC) [316].
AKT/mTOR, MAPK, ATM-Chk2-p53-p21
(NKTCL) [317].
MYCN/DKK3-Wnt/S-catenin (B-ALL) [318].
Hedgehog signaling-miRNA-338-5p (glioma
cells) [319].
HDAC3-AKT-P21-CDK2 (AML) [320].
Enasidenib IDH2i N/A 2-HG (AML) [321].  AML
Ivosidenib IDHI1i N/A AML

PRDM1/BLIMPI (NHL) [322].

Drug of epigenetic Molecular target of
therapy drug therapy

Azacitabine DNMTi

Decitabine DNMTi AML; CMML; MDS

Vorinostat HDACI

Romidepsin HDACI
Belinostat HDACI

CTCL; PTCL
PTCL

Panobinostat HDACI Multiple myeloma

Chidamide HDACI

Tazemetostat EZH2i Epithelioid sarcoma
and follicular

lymphoma

Abbreviations: ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; APCL, APC regulator of WNT signaling pathway 2; ATM, ataxia telangiectasia-
mutated gene; Bcl-2, B-cell lymphoma-2; Bel-x1, B-cell lymphoma-extra-large; BLIMP1, B lymphocyte-in-duced maturation protein-1; BMF, B-cell lymphoma-2;
c-MET, cellular-mesenchymal epithelial transition factor; CDK2, cyclin dependent kinase 2; CMML, Chronic myelomonocytic leukaemia; CRC, colorectal cancer;
CTCL, central T cell lymphoma; DKK3, Dickkopf WNT signaling pathway inhibitor 3; DNMTi, DNA methyltransferase inhibitors; dSRNA, double-stranded RNA;
EZH2i, enhancer of Zeste homolog2 inhibitor; FOXM1, Forkhead box M1; HDACI, histone deacetylase inhibitor; HGF, hepatocyte growth factor; IDHIi, isocitrate
dehydrogenase 1 inhibitor; IDH2i, isocitrate dehydrogenase 2 inhibitor; IL-6, Interleukin 6; IRF7, Interferon regulatory factor 7; MAPK, mitogen-activated protein
kinase; MAVS, mitochondrial antiviral signaling protein; MDAS5, melanoma differentiation-associated gene 5; MDS, myelodysplastic syndromes; mTOR, mam-
malian target of rapamycin; MYC, myelocytomatosis; MYCN, BHLH transcription factor; N/A, not applicable; NKTCL, Natural killer/T-cell lymphoma; NSCLC,
non-small cell lung cancer; PI3K, phospoinositide 3-kinases; PRDM1, PR/SET Domain 1; PTCL, peripheral T-cell lymphoma; SAPK, stress activated protein kinase;
SPCA2, ATPase secretory pathway Ca2+ STAT3, signal transducer and activator of transcription 3; TGFBI, transforming growth factor beta Induced; THBSI,
thrombospondin 1; TNF-R1, TNF receptor 1; TNFSF10, TNF superfamily member 10; TRAIL-R2, TNF-related apoptosis-inducing ligand receptor 2; transporting
2; UBE2C, ubiquitin conjugating enzyme E2 C; UPR, unfolded protein response.

6 | CONCLUSIONS AND FURTHER
PERSPECTIVES

Since TAMs, MDSCs, and Treg cells are the most repre-
sentative ISCs in TME, this review started with these three
cell types and respectively introduced the roles of them in
oncogenesis. Recently, people have paid more attention to
the epigenetic mechanism. We specially focused on TME

and tried to explore the epigenetic mechanism of ISCs.
Based on this, we hope to find the specific biomarkers
of ISCs, aiming at promoting clinical drug development.
Besides, we combined with the approved epigenetic ther-
apy and tried to explore the mechanisms of its curative
effect and expand the scope of indications. Or, combined
epigenetic therapy with other clinical therapies to alleviate
the related side effects, perhaps.
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