Received: 11 August 2022

Revised: 3 January 2023

Accepted: 17 February 2023

DOI: 10.1002/cac2.12412

ORIGINAL ARTICLE

ANCER
COMMUNICATIONS

Combining radiation and the ATR inhibitor berzosertib

activates STING signaling and enhances immunotherapy via

inhibiting SHP1 function in colorectal cancer

Chaofan Liu | Xi Wang

Wan Qin | JingyaoTu | ChunyaLi | Weiheng Zhao |

LiMa | BoLiu | HongQiu | Xianglin Yuan

Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China

Correspondence

Xianglin Yuan, Hong Qiu and Bo Liu,
Department of Oncology, Tongji Hospital,
Tongji Medical College, Huazhong
University of Science and Technology,
‘Wuhan 430000, Hubei, P. R. China.
Email: yuanxianglin@hust.edu.cn;
qiuhong@hust.edu.cn;
boliu888@hotmail.com

Funding information

Innovative Capacity Building Project of
the Hubei Engineering Research Center
for Radiotherapy and Radiation
Protection of Tongji Hospital, Tongji
Medical College, Huazhong University of
Science and Technology, Grant/Award
Number: 2018-420114-35-03-071705; State
Key Program of National Natural Science
of China, Grant/Award Number:
82130092; National Natural Science

Abstract

Background: Immune checkpoint inhibitors (ICIs) targeting programmed cell
death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) have shown a
moderate response in colorectal cancer (CRC) with deficient mismatch repair
(dMMR) functions and poor response in patients with proficient MMR (pMMR).
pMMR tumors are generally immunogenically “cold”, emphasizing combination
strategies to turn the “cold” tumor “hot” to enhance the efficacy of ICIs. ATR
inhibitors (ATRi) have been proven to cooperate with radiation to promote anti-
tumor immunity, but it is unclear whether ATRi could facilitate the efficacy of
IR and ICI combinations in CRCs. This study aimed to investigate the efficacy
of combining ATRi, irradiation (IR), and anti-PD-L1 antibodies in CRC mouse
models with different microsatellite statuses.

Methods: The efficacy of combining ATRi, IR, and anti-PD-L1 antibodies was
evaluated in CRC tumors. The tumor microenvironment and transcriptome sig-
natures were investigated under different treatment regimens. The mechanisms

were explored via cell viability assay, flow cytometry, immunofluorescence,
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death-ligand 1; ICI, immune checkpoint inhibitor; MSI-H, microsatellite instability-high; dAMMR, mismatch repair gene-deficient; MSS, microsatellite

stable; pMMR, mismatch repair gene-proficient; TIL, tumor-infiltrating lymphocyte; MHC-I, major histocompatibility complex class-I; Treg,
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immunoblotting, co-immunoprecipitation, and real-time quantitative PCR in
multiple murine and human CRC cell lines.

Results: Combining ATRi berzosertib and IR enhanced CD8*T cell infiltra-
tion and enhanced the efficacy of anti-PD-L1 therapy in mouse CRC models
with different microsatellite statuses. The mechanistic study demonstrated that
IR + ATRI could activate both the canonical cGAS-STING-pTBK1/pIRF3 axis
by increasing cytosolic double-stranded DNA levels and the non-canonical
STING signaling by attenuating SHP1-mediated inhibition of the TRAF6-STING-
p65 axis, via promoting SUMOylation of SHPI1 at lysine 127. By boosting the
STING signaling, IR + ATRi induced type I interferon-related gene expres-
sion and strong innate immune activation and reinvigorated the cold tumor
microenvironment, thus facilitating immunotherapy.

Conclusions: The combination of ATRi and IR could facilitate anti-PD-L1 ther-
apy by promoting STING signaling in CRC models with different microsatellite
statuses. The new combination strategy raised by our study is worth investigating

KEYWORDS

1 | BACKGROUND

Colorectal cancer (CRC) is the third most common can-
cer type and one of the major causes of cancer-related
death [1, 2]. Approximately 20% of patients with CRC have
metastatic tumors (mCRC) at diagnosis, making most of
the lesions unresectable [3]. Over the past few decades,
advances in non-surgical techniques and expanded tar-
geted therapies have greatly improved the survival of
patients with mCRC. One of the most revolutionary meth-
ods is immunotherapy, especially immune checkpoint
blockade therapy targeting programmed cell death pro-
tein 1 (PD-1) and programmed death-ligand 1 (PD-L1) [4].
Immune checkpoint inhibitors (ICIs) have shown a mod-
erate response in CRCs and have become the first-line
therapy for patients with microsatellite instability-high
(MSI-H) or mismatch repair-deficient ({MMR) signatures,
which, unfortunately, only consist of approximately 5% of
all mCRCs [5-8]. Most patients are microsatellite stable
(MSS) or mismatch repair proficient (pMMR), responding
poorly to ICIs [9]. Therefore, there is an urgent need to
improve the response to ICIs, especially in MSS/pMMR
CRCs.

MSS/pMMR tumors generally have low levels of tumor
immunogenicity and tumor-infiltrating lymphocytes
(TILs), presenting a “cold” microenvironment, underlying
potential combinational strategies to turn the cold tumor

in the management of CRC.

colorectal cancer, ATR inhibitor, radiotherapy, immune checkpoint inhibitor, PD-L1, innate
immunity, cGAS-STING, DNA damage, SHP1, SUMOylation

hot to overcome ICI resistance [10, 11]. As a universal
standard of care for many cancer types, radiotherapy plays
a complex role in altering the tumor microenvironment
[12]. The pro-immunogenic role lies in its ability to
promote T cell priming by inducing tumor-associated
antigens, upregulating major histocompatibility complex
class-I (MHC-I) expression and generating an in situ
vaccine [12-14]. In contrast, immune suppressive cells
and molecules such as regulatory T cells (Tregs), myeloid-
derived suppressor cells (MDSCs), tumor-associated
macrophages (TAMs), and transforming growth factor
B (TGF-B) are stimulated by irradiation (IR) [15-18].
In addition, accumulating evidence demonstrates that
IR-induced cytoplasmic DNA could activate the cyclic
GMP-AMP synthase (cGAS)-stimulator of interferon
genes (STING) pathway, promoting interferon signaling
and dendritic cell (DC) activation, which links DNA
damage to innate immune activation and the adaptive
antitumor response [19, 20]. This role of IR-induced
DNA damage in promoting anti-tumor immunity raises
a new perspective on combining radiotherapy with
immunotherapy.

Cells harbor complex mechanisms in response to DNA
damage, in which ataxia telangiectasia mutated kinase
(ATM) and ataxia telangiectasia mutated and rad3-related
kinase (ATR) serve as key players in addressing IR-induced
DNA double-strand breaks. A Previous study illustrated
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that ATM inhibition promoted both canonical and non-
canonical STING activation to enhance the efficacy of
ICIs along with radiotherapy [21], yet the impact of ATR
inhibition on STING signaling is not fully understood.
Meanwhile, recent studies have unveiled different roles of
ATR inhibitors (ATRi) in improving antitumor immunity
in various tumor models [22, 23], but the synergy in com-
bination with IR and ICIs in CRCs has not been tested.
Hence, the present study aimed to identify the role of ATR
inhibition in cGAS-STING signaling and explore the anti-
tumor efficacy of combining ATRi, IR and ICI therapy in
colorectal tumors, which could directly inform ICI therapy
strategies for patients with CRC.

2 | MATERIALS AND METHODS

2.1 | Cell culture

Human CRC cell lines HCT116 and SW480 and murine
CRC cell lines CT26 and MC38 were obtained from the Cell
Bank of Chinese Academy of Sciences (Shanghai, China).
HCTI116 cells were cultured in McCoy’s 5A modified
medium (HyClone, ThermoFisher, Waltham, MA, USA)
with 10% fetal bovine serum (FBS, Gibco, ThermoFisher).
SW480 cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM)-high glucose (HyClone, ThermoFisher)
with 10% FBS. CT26 and MC38 cell lines were cultured in
Roswell Park Memorial Institute (RPMI)-1640 (HyClone,
ThermoFisher) with 10% FBS. All cell lines were cultured
under 5% CO, and proper humidity at 37°C in an incubator.

2.2 | Reagents and antibodies

The ATRi berzosertib (VE-822, HY-13902) and Src homol-
ogy 2 domain containing protein tyrosine phosphatase-1
(SHP1) agonist SC43 were purchased from MedChem-
Express (HY-136657; Monmouth Junction, NJ, USA).
Anti-PD-L1 was purchased from BioXCell (BE0101, clone
10F.9G2, West Lebanon, NH, USA).

2.3 | Establishment of mouse CRC
models and treatments

Female (5-6 weeks) C57/B6J and Balb/C mice were pur-
chased from Hunan SJA Laboratory Animal Co., Ltd.
(Changsha, Hunan, China) and raised in a specific
pathogen-free laboratory. Animal experimental proce-
dures were approved by the Laboratory Animal Welfare
& Ethics Committee of Tongji Hospital Huazhong Univer-
sity of Science and Technology (permit No. TJTH-201910007,

Wuhan, Hubei, China). MC38 (1 x 10° cells/100 uL) and
CT26 (1 x 10° cells/100 pL) cells were injected subcuta-
neously into the flanks of the C57/B6J and Balb/C mice.
Tumor volume was measured every three days using a
caliper and was calculated by V = [length x width?] x
0.5. For irradiation, mice were anesthetized with 1.5% pen-
tobarbital sodium and received a single fraction of 5 Gy
X-ray dose to the area of the subcutaneous tumor using
the RS2000 X-ray Biological Research Irradiator (160 kV,
25 mA, Source Technologies Inc., Suwanee, GA, USA).
Berzosertib (60 mg/kg) was administered by gavage 2
h before IR and consecutively for the next three days.
Anti-PD-L1 (10 mg/kg) was administered intraperitoneally
every three days, starting on the day of IR. When the tumor
volume reached 2000 mm?, the mice were euthanized by
CO, inhalation as a humane endpoint.

2.4 | Immunohistochemistry (IHC)
Subcutaneous tumors were harvested, fixed with 4%
paraformaldehyde overnight and then embedded in paraf-
fin. Subsequently, tissue sectioning was performed, and
sections were deparaffinized, rehydrated, blocked of
endogenous peroxidase and subjected to antigen retrieval.
Antigen retrieval was performed by microwaving the sec-
tions in PH 6.0 citrate buffer (Beyotime, Shanghai, China)
at 95°C for 20 minutes, followed by incubation with 5%
bovine serum albumin (BSA) (Beyotime) at room temper-
ature for 1 h. Sections were then incubated with primary
antibodies anti-CD3e (1: 1:200, ab251607, Abcam, Cam-
bridge, MA, USA) and anti-CD8a (1:200, ab237723, Abcam)
overnight at 4°C, followed by PBS wash and secondary
antibody (1:5000, Aspen, Wuhan, Hubei, China) incuba-
tion at room temperature for 1 h. 3,3’-Diaminobenzidine
(DAB; Aspen) was then used for staining, and hema-
toxylin (Aspen) was used for counter staining. The slides
were visualized using a NanoZoomer S360 (Hamamatsu,
Japan). The number of CD3" and CD8" cells was counted
manually in each 10 x 20 field for multiple randomly
selected fields. All antibodies and diluted concentrations
are listed in the Supplementary Table S1.

2.5 | Flow cytometry analysis

Tumors were harvested and prepared as single-cell suspen-
sions using a tumor dissociation kit (130-096-730; Miltenyi
Biotec, San Diego, CA, USA) and gentleMACS Dissociator
(Miltenyi Biotec) following the manufacturer’s protocols.
Red blood cells (RBCs) were removed using RBC lysis
(Solarbio Life Sciences, Beijing, China). FVS780 (565388,
1:1000; BD Biosciences, Franklin Lakes, NJ, USA) was
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used for live/dead staining for 5 min, followed by PBS
washing and cell marker staining for 1 h. Cells were then
washed with PBS and detected using a CytoFLEX LX
cytometer (Beckman Coulter, Pasadena, CA, USA). Gating
was performed using FlowJo 10.3 (FlowJo LLC, Ashland,
OR, USA), and the gating strategies for TILs and DCs
are demonstrated in Supplementary Figure S1. Briefly,
CD45-PE (1:100), CD3e-BV510 (1:100), CD4-BV421 (1:100),
and CD8a-FITC (1:100) were used for tumor-infiltrating T
cell staining. CD45-PE (1:100), CD11c-PerCP-Cys5.5 (1:100),
I-A/I-E-Alexa Fluor 647 (1:50), CD8a-FITC (1:100), and
CD86-PE-Cy7 (1:100) were used for mature DC and tumor-
infiltrating DC staining. CD16/32 (1:100) was used for
blocking. All the antibodies, their suppliers, and the clone
numbers used for flow cytometry are listed in Supplemen-
tary Table S1.

2.6 | Cellviability assay

Cell viability was evaluated using the Cell Counting Kit-8
(CCK-8, MedChemExpress). Briefly, 5 x 10° cells per well
were disseminated onto the 96-well plates. Twenty-four
hours later, ATRi was delivered at concentrations from 0
umol/L to 2 umol/L, followed by 5 Gy irradiation. Twenty-
four hours after IR, cells were incubated with 10% CCK-8 at
37°C for subsequent measurement of absorbance at 450 nm
using a microplate reader (Synergy2, BioTek, Winooski,
VT, USA).

2.7 | Cell cycle analysis

ATRi (1 umol/L) was added 2 h before IR and remained
within the medium until harvest. Cells were harvested 0
h, 4 h, 8 h, and 12 h after IR, fixed using 70% ethanol
overnight. The next day, cells were washed with ice-cold
PBS and then incubated with RNase (Beyotime, 50 ug/mL)
at 37°C for 30 min, followed by Propidium Iodide (PI, 50
pg/mL) staining at 4°C for 30 min. The DNA contents of
the cells were analyzed using a CytoFLEX LX cytometer
(Beckman Coulter). Phospho-histone H3-Alexa Fluor 488
(1:100, #3465, Cell Singling Technology, Beverly, MA, USA)
staining was performed following instructions described
by Shen et al. [24] and detected using the CytoFLEX LX
cytometer.

2.8 | Immunofluorescence microscopy
and micronuclei assay

Cells were seeded into a 24-well plate containing coverslips
before receiving IR. Twelve hours after 5 Gy radiotherapy,

the cells were harvested, fixed with 1% paraformalde-
hyde, permeabilized with 0.5% Triton, blocked with 5%
BSA and then incubated with primary antibodies at
4°C overnight. The primary antibodies were anti-double
stranded DNA (dsDNA; 1:200, ab27156, Abcam), anti-cGAS
(1:200, #79978, Cell Singling Technology) and anti-NF-
xB P65 (1:200, A2547, ABclonal, Wuhan, Hubei, China).
The next day, the cells were incubated with secondary
antibodies for 1 h at room temperature followed by 2-
(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride
(DAPI; Abbkine, Beijing, China) staining for 5 min. The
secondary antibodies were Cy3, goat anti-rabbit IgG (1:500,
A22220, Abbkine, Beijing, China), DyeLight 488 goat anti-
mouse IgG (1:500, A23240, Abbkine), and DyeLight 488
goat anti-rabbit IgG (1:500, A23220, Abbkine). Cover slides
were then mounted for microscopy. For terminal deoxynu-
cleotidyl transferase dUTP nick end labeling (TUNEL)
assay, sections were stained using the TUNEL staining kit
(11684817910, Roche, Germany) according to the manu-
facturer’s protocols. For the micronuclei assay, cells were
stained with DAPI with antifade reagent for microscopy
and scoring. At least 150 nuclei were counted in 10 fields.

2.9 | dsDNA quantification

dsDNA quantification was performed using Quant-iT
Pico-Green dsDNA reagent and kits (P11496, Ther-
moFisher) following the manufacturer’s instructions.
Briefly, cells were harvested 12 h after IR, seeded into a
96-well plate and incubated with Picogreen for 20 min
at room temperature. Then, the fluorescence of each
well was detected using a microplate reader (Synergy2)
and calculated into dsDNA concentrations based on the
standard curve.

2.10 | Immunoblotting

Total protein was extracted using Radio Immunoprecipita-
tion Assay (RIPA) lysis buffer (Beyotime, Wuhan, Hubei,
China) supplemented with phenylmethylsulfonyl fluoride
(PMSF) and phosphatase inhibitor cocktail (HY-K0021,
MedChemExpress). Immunoblotting was performed using
a BioRad Gel System (Hercules, CA, USA). The proteins
were loaded into 10% Sodium Dodecyl Sulfate PolyAcry-
lamide Gel Electrophoresis (SDS-PAGE) gels, followed by
transfer of the proteins to 0.45 um polyvinylidene fluo-
ride (PVDF) membranes (Millipore, Billerica, MA, USA).
BSA was used for blocking for 1 h, and the membrane
was incubated with primary antibodies overnight (4°C).
The membranes were then incubated with secondary anti-
bodies for 1 h at room temperature. Subsequently, the
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immunoblots were analyzed using SuperSignal West Pico
Chemiluminescent Substrate (ThermoFisher) in a BOX
Chemi X system (Syngene, Cambridge, UK). The anti-
bodies anti-histone H2A.X (1:1000, #7631), anti-phospho-
Checkpoint kinase 1 (CHK1)-Ser345 (1:1000, #2348), anti-
TANK binding kinase 1 (TBKI)-Serl72 (1:1000, #5483),
anti-TBK1 (1:1000, #3504), anti-phosho-interferon reg-
ulatory factor 3 (IRF3)-Ser396 (1:1000, #29047), anti-
IRF3(1:1000, #4302), anti-phoshpho-stimulator of inter-
feron genes (STING)-Ser365 (1:1000, #72971), anti-STING
(1:1000, #50490), and anti-phospho-signal transducer and
activator of transcription 1 (STAT1)-Tyr701 (1:1000, #9167)
were purchased from Cell Singling Technology. The pri-
mary antibodies anti-CHK1 (1:1000, ab32531) and anti-
SHP1 (1:1000, ab227503) were purchased from Abcam. The
antibodies anti-p65 (1:1000, A19653), anti-TNF receptor
associated factor 6 (TRAF6; 1:1000, A0973), and anti-
small ubiquitin like modifier 1 (SUMO1; 1:1000, A19121),
anti-signal transducer and activator of transcription 3
(STATS3; 1:1000, A19566), and secondary antibodies HRP-
conjugated goat anti-mouse IgG (1:10,000, AS003) and
HRP-conjugated goat anti-rabbit IgG (1:10,000, AS014)
were from Abclonal. Anti-glyceraldehyde-3-phosphate
dehydrogenase (GAPDH; 1:10,000, 1IE6D9) was purchased
from Proteintech (Wuhan, Hubei, China). All antibodies
and their applications are listed in Supplementary Table S1.

2.11 | RNA isolation, reverse
transcription, and real-time qPCR
(RT-qPCR)

RNA was isolated using the FastPure Cell/Tissue Total
RNA Isolation Kit V2 (#RC112, Vanzyme, Nanjing, Jiangsu,
China) following the manufacturer’s protocols. For reverse
transcription, PrimeScript RT Master Mix (#RRO036A,
Takara, Kusatsu, Japan) was used. RT-qPCR was per-
formed using ChamQ Universal SYBR qPCR Master Mix
(#Q711-02, Vanzyme) in the ABI-7900HT Sequence Quan-
tification System (Applied Biosystems, Foster, CA, USA).
27AACT was calculated as the relative level of mRNA
expression. Primer sequences are listed in Supplementary
Table S2.

2.12 | Cell transfection

The plasmids expressing Flag-Negative control (Flag-NC),
Flag-STING, Flag-SHP1, and Flag-SHP1-AK127R-mutant
and the virus shSTING, shSting, and scramble viruses
were purchased from GeneChem (Shanghai, China). The
RNAI sequences used in viruses are listed in Supplemen-
tary Table S3. The knockdown efficiency was evaluated
using immunoblotting. HCT116 cells transiently express-

ing Flag-NC (control vector), Flag-STING, Flag-SHPI, or
Flag-SHP1-AK127R-mutant were obtained by transfection
of the indicated plasmids using Lipo3000 (ThermoFisher)
following the manufacturer’s protocols. Viral particles
and polybrene (6 pg/ml, GeneChem) were mixed with
cell culture medium and added to HCT116 or CT26 cells
to establish stable cells with negative control (shNC),
shSTING-HCT116 cells and shSting-CT26 cells. Puromycin
(10 pg/mL, GeneChem) was used to screen cells with
successful transfection.

2.13 | Co-immunoprecipitation

Cells lysates were prepared by using NP40 lysis buffer
(Beyotime) containing PMSF and phosphatase inhibitor
cocktail. Anti-SHP1 (1:100) or anti-Flag (1:100, Sigma, St.
Louis, MO, USA) were pre-mixed with protein A/G mag-
netic beads (HY-K0202, MedChemExpress) for 2 h at
4°C. Cell lysis and magnetic beads were then mixed for
4 h at 4°C, followed by thorough washing and subse-
quent elution according to the manufacturer’s protocols.
Samples were then detected with indicated antibodies by
immunoblotting.

2.14 | Liquid Chromatography Coupled to
Tandem Mass Spectrometry (LC-MS/MS)

HCT116 cells were treated with 1 umol/L ATRi 2 h before IR
and remained in the medium until harvest. Twelve hours
after radiotherapy, HCTI116 cells were lysed, and proteins
were harvested for immunoprecipitation using anti-SHP1
(1:100) and subsequent mass spectrometry. LC-MS/MS
data acquisition was carried out on a Q Exactive Plus mass
spectrometer (ThermoFisher) coupled with an EASY-nLC
1200 system (ThermoFisher) following the manufacturer’s
protocols. Raw MS data were processed with MaxQuant
software (V1.6.6, Munich, Germany) according to the
Andromeda database search algorithm, and the spec-
tra files were searched according to the UniProt human
proteome database (https://www.uniprot.org/). False dis-
covery rate was set at 1% for filtering search results at both
protein and peptide levels.

2.15 | Prediction of SUMOylation sites

Three online tools were used to predict the consensus
SUOMylation sites: SUMOplotTM Analysis Program
(https://www.abcepta.com.cn/sumoplot), GPS-SUMO
[25] (https://sumo.biocuckoo.cn/) and JASSA [26]
(http://www.jassa.fr/) The protein sequence of SHP1
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(P29350) was downloaded from the UniProt human pro-
teome database (https://www.uniprot.org/) and submitted
for online prediction.

2.16 | RNA sequencing

CT26 tumors were harvested three days after IR. Total
RNA isolation was performed using TRIzol reagent (Life
Technologies, Carlsbad, CA, USA) and library preparation
was performed using VAHTS Stranded mRNA-seq Library
Prep Kit for Illumina V2 (NR612-01; Vanzyme). Briefly,
mRNA was purified from total RNA, fragmented, and
cDNA were obtained by two rounds of reverse transcrip-
tion according to the protocol provided. Adapter ligation
and size selection were then performed, followed by ampli-
fication of the cDNA library. Sequencing was performed
on the Illumina HiSeq platform (San Diego, CA, USA).
Library preparation, sequencing, and data processing were
accomplished by GENEWIZ (South Plainfield, NJ, USA).
Differentially expressed genes (DEGs) were set when the
gene expression in the two compared groups was of >1.5-
fold difference with an adjusted P value <0.05. DEGs with
the log2FoldChange were used through the R package
clusterProfiler for Gene ontology (GO) analysis and Gene-
set Enrichment Analysis (GSEA), and the results were
visualized through the R package ggplot2.

2.17 | Statistical analyses

Statistical graphs and analysis were generated and per-
formed using GraphPad Prism 8.0 (San Diego, CA, USA)
or R software (version 4.1.2, https://www.r-project.org/).
Comparisons of multiple groups were performed by
using one-way Analysis of Variance (ANOVA) or two-way
ANOVA (group with magnitude change) with Tukey’s post
hoc test. Comparison between only two groups was per-
formed using unpaired ¢ test or unpaired ¢ test with Welch
correction if variances were significantly different. Sur-
vival analysis of tumor-bearing mice was performed using
the Kaplan-Meier method and compared by the log-rank
test. Statistical significance was shown as *P < 0.05, **P <
0.01, and ***P < 0.001.

3 | RESULTS

3.1 | IR+ ATRienhanced T cell
infiltration in CRC mouse models

The ATRi berzosertib has been shown to elicit an immune-
modulatory effect in the TC-1 pancreatic mouse model

[22, 27]. To assess the effect of the ATRi on CRC, we
used two syngeneic tumors MC38 (AMMR, high immuno-
genicity) [28] and CT26 (pMMR, low immunogenicity)
[29] with different microsatellite statuses and evaluated
the tumor microenvironment after berzosertib treatments
(Figure 1A). Compared to IR alone, the combination of
IR and ATRi (IR + ATRi) showed delayed tumor growth
(Figure 1B). IHC analysis revealed significant increase of
CD3* and CD8* cells in both MC38 (Figure 1C-D) and
CT26 tumors (Figure 1E-F) in mice treated with IR + ATRI.
These results were confirmed by flow cytometry analysis,
with the combination therapy exhibiting the highest pro-
portions of CD457CD3* T cells and CD8*CD4~ T cells and
decreased proportion of CD4*CD8™ T cells (Figure 1G-J).
Taken together, we found that IR + ATRi was able to elicita
favorable immune profile with enhanced TILs in CRC with
different immunogenicity statuses.

3.2 | ATRIi sensitizes CRC cells to IR and
promotes mitotic progression after IR

For a comprehensive understanding of the mechanisms
underlying the pro-inflammatory effect induced by IR +
ATRI, we initially investigated ATRi’s impact on cell pro-
liferation, DNA damage and cell cycle distribution. As
expected, IR + ATRi reduced the proliferation of mul-
tiple CRC cell lines, including human CRC cell lines
HCT116 and SW480 and mouse CRC cell lines CT26
and MC38, indicating the radio-sensitization effect of
ATRi (Figure 2A). In response to IR-induced DNA dam-
age, ATR kinase is activated and promotes G,/M phase
arrest to facilitate repair of DNA damage. Immunoblot-
ting and immunofluorescence analysis confirmed the role
of ATRi in DNA damage repair, as IR + ATRi treatment
resulted in highest levels of yH2AX expression and yH2AX
foci (Figure 2B, Supplementary Figure S2). Meanwhile,
pCHKI-serine 345 was extensively abrogated after treat-
ment with ATRi or IR + ATRI, indicating the on-target
effect of the inhibitor (Figure 2B, Supplementary Figure
S3). Subsequent cell cycle distribution analysis revealed
sharp increases 8 h and 12 h after IR, indicating IR-induced
G,/M phase arrest. In contrast, the accumulation of cells
in G,/M phase was remarkably abrogated in HCT116
and CT26 cells after IR + ATRi treatment (Figure 2C-
D). The effect was confirmed with IR + ATRi exhibiting
increased phospho-histone H3-positive (pH3") cells 12 h
after IR (Figure 2E-F). Histone H3 is specifically phos-
phorylated during mitosis, indicating that ATRi disrupts
the cell cycle checkpoint to promote mitotic entry after
DNA damage. Combining these results, it can be con-
cluded that ATRi impaired G,/M checkpoint initiation and
maintenance.
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FIGURE 2 ATRisensitizes CRC cells to
IR, promotes mitotic reentry, and enhances
innate immune signaling (A) Cell viability
assay of multiple CRC cell lines treated with
ATRi and IR +ATRi. (B) Immunoblot
analysis of yH2AX and pCHXK1 in multiple
CRC cell lines treated with different
regimens. (C-D) Cell cycle distribution
analysis of HCTI116 and CT26 cells treated
with IR and IR +ATRi. (E-F) Representative
of flow cytometry images (E) and
quantitative analysis (F) of phospho-histone
H3* cells in HCT116 and CT26 cells. (G)
Number of DEGs in GO analysis of the
RNA-seq results. (H) GSEA of DEGs in the
IR +ATRIi group compared to the vehicle
group. (I) GSEA of DEGs in the IR +ATRi
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**, P < 0.01; ***, P < 0.001; ns, not
significant.

Abbreviations: CRC, colorectal cancer; IR,
radiation; CHK1, checkpoint kinase 1; pH3,
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expressed gene; GO, gene ontology; GSEA,
gene-set enrichment analysis.
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3.3 | RNA-seqrevealed enhancement of
innate immune signaling following IR +
ATRi treatment

Next, CT26 tumors under different regimens were har-
vested for RNA-seq analysis for a comprehensive under-
standing of the in vivo effect of IR + ATRi. DEGs were
evaluated based on the functional classification of GO
terms. Compared to the vehicle control, mice treated
with IR and the combination therapy had the most pro-
found changes in “defense response to virus”, “innate
immune response” and “inflammatory response” pro-
cesses, suggesting alteration of the innate immune sig-
naling induced by IR + ATRi (Figure 2G). GSEA also
verified interferon-related signaling activation, including
interferon (IFN)-alpha beta and IFN-gamma signaling, as
well as DNA damage response downregulation via ATR
kinase (Figure 2H). Consistently, IR + ATRi treatment
also exhibited a gene signature with enhanced inter-
feron signaling, Nuclear Factor-xB (NF-xB) activation and
TRAF6-mediated interferon regulatory factor 7 (IRF7) acti-
vation compared to IR (Figure 2I). Taken together, the
transcriptome results demonstrated profound alterations
in innate immune signaling mediated by IR + ATRi.

3.4 | ATRI potentiates IR-induced
cGAS-STING-pTBK1/pIRF3 pathway

Recent studies have reported that cell cycle-specific DNA
damage is required for canonical cGAS-STING activa-
tion by induction of micronuclei and the STING sig-
naling is essential in innate immune activation against
tumors [30, 31]. We hypothesized that IR + ATRi might
increase micronuclei formation as ATRi promoted unex-
pected mitotic reentry before DNA damage was efficiently
repaired (Figure 3A). This was confirmed by IF analysis,
with increased micronucleated cells and cGAS localization
to micronuclei following IR + ATRi treatment (Figure 3B-
C, Supplemenatry Figure S4). dsDNA quantification assay
also confirmed higher levels of dsDNA after the IR + ATRi
treatment in both HCT116 and CT26 cells (Figure 3D). After
recognizing cytosolic dsDNAs, cyclin GMP-AMP (cGAMP)
is produced and then activates STING [32], which in turn
phosphorylates TANK-binding kinase 1 (TBK1) and inter-
feron regulatory factor 3 (IRF3) [20, 33]. As expected, the
most robust activation of pTBK1 and pIRF3 expression
was observed after IR + ATRIi treatment in multiple CRC
cell lines, indicating strong activation of the cGAS-STING-
pTBK1-pIRF3 axis (Figure 3E, Supplementary Figure S5).
A similar effect was observed in vivo, with CT26 tumors
derived from syngeneic mice in the IR + ATRi group show-

ing the highest levels of pTBK1 and pSTING (Figure 3F)
and increased fluorescence of pIRF3 foci (Figure 3G).

3.5 | IR+ ATRiinduces activation of
innate immune signaling

The cGAS-STING axis promotes the induction of innate
immune genes, including the interferon stimulated genes
(ISGs) C-X-C motif chemokine ligand 10 (CXCL10) and C-
C motif chemokine ligand 5(CCL5) and the type IIFN gene
Interferon Beta 1 (IFNB) [20]. Consistently, compared to IR
alone, IR + ATRi caused a sharp increase in the mRNA
levels of CXCLIO, CCL5, and IFNB in HCT116 and CT26
cells (Figure 3H-I), which was confirmed in other human
(SW480) and mouse (MC38) cell lines (Figure 3J-K). in
vivo activation of type I IFN signaling also confirmed the
effect in CT26 tumors (Figure 3L). STING-related produc-
tion of type I IFN was demonstrated to promote innate
immune cell maturation, such as DCs, to facilitate adap-
tive immune response against tumors [34, 35]. Consistent
with the effect, IR + ATRi improved levels of CD1lc*
MHC-IT* DCs and tumor-infiltrating DCs (TIDCs, CD11c*
CD8*" DCs) (Figure 3M-N) and stimulated the matura-
tion marker CD86 within the CT26 tumors (Figure 30).
Taken together, these results demonstrated that IR + ATRi
induced robust activation of type I interferon signaling and
innate immune signaling.

3.6 | IR + ATRi potentiates
non-canonical STING activation by
inhibiting SHP1-TRAF6/STING interaction

Multiple DNA damage agents, including ATM inhibitors,
etoposide, platinum-based therapy, and IR, have been
proven to induce the non-canonical STING activation,
which is also indispensable in the anti-tumor innate
immune activation [21, 36, 37]. To fully understand the
ATRi’s impact on the STING-mediated innate immune
signaling, we next evaluated non-canonical STING axis
under different treatment regimens. In multiple CRC
cell lines, IR + ATRi improved pP65 activation, a non-
canonical STING singling marker required for innate
immune gene production, and upregulated pSTAT1 acti-
vation (Figure 4A, Supplementary Figure S6). IF analysis
also confirmed the effect with a marked increase in p65
translocation to the nucleus following IR + ATRi treatment
in HCT116 cells and HT29 cells (Figure 4B, Supplemen-
tary Figure S7). These results indicate strong activation of
non-canonical STING signaling after treatment with IR +
ATRI.
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Next, we sought to determine the mechanism of non-
canonical activation of STING signaling induced by IR +
ATRI. Surprisingly, the analysis of the transcriptome data
revealed decreased mRNA levels of Shpl (also known as
protein tyrosine phosphatase non-receptor type 6, Ptpné),
which was involved in both type I IFN signaling and innate
immune signaling (Figure 4C). This led us to explore
the role of SHP1 in ATRi-related STING axis activation.
A recent study reported that SHP1 was specifically acti-
vated upon HIV infection and dephosphorylated TRAF6
and STING and inhibited their ability to induce antivi-
ral immunity [38], but how SHPI1 affects tumor-specific
STING activation has not been described. Thus, we sought
to determine whether IR + ATRi affects the non-canonical
STING axis by inhibiting SHP1. Surprisingly, co-IP anal-
ysis revealed SHP1-STING and SHP1-TRAF6 interactions
decreased after IR + ATRi treatment (Figure 4D-E).
Evidence existed that the TRAF6-STING-TBK1 complex
assembly plays a crucial role in regulating the recruitment
of P65 and IRF3 activation [37]. Consistently, we observed
higher levels of STING-TRAF6 interaction after IR +
ATRI treatment (Figure 4E), indicating strong activation
of the TRAF6-STING axis. Next, we used an SHP1 agonist,
SC43, and STING-knockdown HCTI116 cells to identify the
impact of SHP1 on the activation of non-canonical STING
induced by IR + ATRi. As expected, STING knockdown
fully abrogated pSTING, pIRF3, and pP65 activation. SC43
largely reduced pP65 activation, while the canonical pIRF3
and overall pSTING activation were only partially inhib-
ited (Figure 4F, Supplementary Figure S8). Similarly, the
upregulation of CXCLIO, CCL5, and IFNBwas abrogated by
adding SC43 (Figure 4G, Supplementary Figure S9). These
results demonstrated that IR + ATRi inhibited the recruit-
ment of SHP1 to the TRAF6/STING complex to facilitate
the activation of the non-canonical STING axis.

3.7 | IR+ ATRIi inhibited SHP1 function
by promoting SUMOylation of SHP1 at
lysine 127

Next, we conducted mass spectrometry to investigate the
protein changes binding to SHP1 after IR + ATRi to under-
stand the mechanism by which ATRi inhibited the SHPI1-

TRAF6/STING interaction. Surprisingly, SHP1-conjugated
small ubiquitin-like (SUMO)-related proteins, including
El-ligase SUMOI activating enzyme subunit 2 (SAE2),
E2-ligase ubiquitin conjugating enzyme E2 I (UBC9), E3-
ligase zinc finger protein 451 (ZNF451), and SUMOL,
were found increased following IR + ATRi treatment
(Figure 5A). These results may indicate that IR + ATRi
could increase the SUMOylation of SHP1. By transfec-
tion of Flag-SHP1 plasmids and subsequent co-IP analysis,
we confirmed increased SUMO1-SHP1 interaction after
IR + ATRIi, compared to IR alone (Figure 5B). For fur-
ther investigation, we used three online prediction tools,
SUMOplot™ Analysis program (Abcepta), GPS-SUMO
and JASSA and found lysine 127 (K127) as one consen-
sus SUMOylation site, which was predicted as a common
SUMO conjugation site from the results of all three tools
(Figure 5C). To confirm the prediction, we mutated lysine
127 to arginine and generated an HCTI16-mut cell line
(AK127R-Mut). IP analysis showed decreased SUMOI con-
jugation in SHPI1-AK127R-mut HCTI16 cells compared
to SHP1-wildtype (SHP1-WT) cells. Consistently, SHP1-
AKI127R-mut reversed the decreasing SHP1-TRAF6/STING
interaction induced by IR + ATRi (Figure 5D). Notably,
we also found that the signal transducer and activator of
transcription 3 (STAT3), a generally acknowledged sub-
strate of SHP1 [39], was increased in SHP1-AK127R-mut
cells, indicative of enhanced phosphatase activity when
SUMOylation of SHP1 was blocked. AK127R-mut also
abrogated the protein levels of pP65 and pIRF3 (Figure 5E,
Supplementary Figure S10) and the mRNA expression of
CXCLIO0 and CCL5 (Figure 5F), similar to previous results
using the SHP1 agonist SC43. These results demonstrate
that IR + ATRi promotes SUMOylation of SHP1 at K127
to inhibit its activity, thus contributing to robust STING
pathway activation.

3.8 | ATRienhances the efficacy of
combined IR and PD-L1 blockade therapy
in CT26 and MC38 tumors

Innate immune system activation induced by STING sig-
naling may cooperate with ICIs to enhance the antitumor
effect [35]. Therefore, we next evaluated the antitumor

(L) Relative expression levels of Cxcl10, Ccl5 in CT26 tumors. (M-N) Representative images (M) and statistical analysis of DCs and tumor

infiltrating-DCs (N) from flow cytometry analysis of CT26 tumors. (O) Representative images of CD86 staining and statistical analysis of CD86
MFI in CT26 tumors. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ns, not significant.

Abbreviations: IR, radiation; cGAS, cyclic GMP-AMP synthase; STING, stimulator of interferon genes; TBK1, TANK binding kinase 1; IRF3,
interferon regulatory factor 3; dsDNA, double stranded DNA; IF, immunofluorescence; MFI, mean fluorescence intensity; CXCL10, C-X-C
motif chemokine ligand 10; CCL5, C-C motif chemokine ligand 5; IFNB, interferon beta 1; DC, dendritic cell; TIDC, tumor-infiltrating

dendritic cell.
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in multiple CRC cell lines after treatments. () Representative IF images of P65 staining in HCT116 cells and quantitative analysis of nuclear
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efficacy of the combined ATRI, IR, and anti-PD-L1 ther-
apy (Figure 6A). In both CT26 tumors and MC38 tumors,
triple therapy using IR + ATRi + anti-PD-L1 dramati-
cally delayed tumor growth compared to dual therapy and
monotherapy regimens (Figure 6B-C). Survival analysis
showed that IR + ATRi + anti-PD-L1 largely extended
the survival of mice compared to any other combinational
treatment (Figure 6D). Notably, complete tumor regression
was observed in mice treated with IR + ATRi + anti-PD-
L1 (Figure 6E). Bioluminescence imaging of MC38 tumors
at the 50-day endpoint demonstrated reduced tumor bur-
den in the triple combination therapy group (Figure 6F-G),
indicating optimal tumor control by the triple therapy.
For further investigation, MC38 tumors were isolated for
Ki67 and TUNEL staining. The triple combination group
exhibited lowest population of Ki67-positive cells (Supple-
mentary Figure S11A-B) and highest expression of TUNEL
(Supplementary Figure S11C-D) compared to other groups.
These results confirmed the optimal anti-tumor effect
induced by the triple therapy.

To assess the requirement of STING in the combina-
tional plan, we next stably knocked down Sting expression
in CT26 cells, confirmed by immunoblotting analysis
(Supplementary Figure S12A). Consistent with previous
results, Sting knockdown remarkably abrogated the upreg-
ulation of type I IFNs after IR + ATRIi treatment (Sup-
plementary Figure S12B) as well as CD8 cell infiltration
(Supplementary Figure S12C). These data suggest that
the immunomodulatory effect of IR + ATRi is STING-
dependent. For further investigation, shSting and shNC
tumors were treated with triple combination therapy. As
expected, Sting depletion completely impaired the anti-
tumor efficacy of triple therapy (Supplementary Figure
S12D). Notably, CD8 depletion using anti-CD8 antibody
also dramatically abrogated the antitumor efficacy (Sup-
plementary Figure S12E-F), confirming the requirement of
CD8 cytotoxicity in the combinational plan. From these
results, we concluded the indispensable role of STING and
cytotoxic CD8™ cells in the antitumor efficacy of IR + ATRi
+ anti-PD-L1.

4 | DISCUSSION

In the present study, we uncovered a predominant role
of ATRi in the activation of STING-mediated innate
immune signaling. IR + ATRi boosts the canonical and
non-canonical activation of the STING axis. Canonically,
ATRi promoted DNA damage, abrogated IR-induced G,/M
arrest and promoted mitotic re-entry, leading to accumu-
lation of cytosolic DNA and subsequent cGAS-STING-
pTBK1/pIRF3 axis activation. Non-canonically, IR + ATRi
promoted SUMOylation of SHP1 at lysine 127, inhibiting its
recruitment to TRAF6 and STING, leading to higher levels
of NF-xB-P65 activation. Both axes contribute to the innate
immune activation induced by IR + ATRi, which was then
exploited by adding anti-PD-L1 therapy to the combination
of ATRi and IR for an optimal antitumor effect (Figure 7).
The study raised a new combination strategy to enhance
ICI efficacy in CRC.

IR plays a potent role in inducing antitumor immu-
nity in addition to producing lethal damage to kill tumors
[40, 41]. Hence, many clinical trials are ongoing investi-
gating the efficacy of combining IR with immune-based
therapy [42]. A growing body of evidence has shown the
pro-inflammatory role of IR in shaping innate immune
activation against tumors, primarily by induction of the
canonical cGAS-STING-mediated DNA sensing [19, 20,
43]. ATR kinase plays an upper-stream role in response to
IR-induced DNA damage, making it a promising target in
combination with radiotherapy [44]. A recent report found
that IR + ATRi could induce in vivo activation of STING
signaling, and combining another ATRi, celarasertib, with
IR and anti-PD-L1 successfully induced optimal antitumor
in hepatocellular carcinoma, but the mechanism remains
to be investigated [45]. While our study tested the simi-
lar effect in the context of CRC, we performed in-depth
investigations of the molecular basis of the type I inter-
feron signaling induced by IR + ATRi. Our results revealed
that inhibition of ATR in the setting of radiotherapy led to
robust activation of the STING signaling, and thus higher
levels of innate immune activation and TIL infiltration.

P65 MFI in HCT116 cells after treatments. (C) Heatmap of genes related to type I interferon signaling and innate immune signaling from
RNA-seq results. (D) Co-IP analysis of SHPI-interacted STING and TRAF6 under different treatment regimens. (E) Co-IP analysis of

STING-interacted SHP1 and TRAF6 under different treatment regimens. (F) Immunoblot analysis of pP65, pIRF3 and pSTING after SHP1
agonist SC43 treatment in HCT116 and STING-knockdown HCT116 cells. (G) Relative expression levels of CXCL10, CCL5 and IFNB after
treatment with SHP1 agonist SC43 in HCT116 and STING-knockdown HCT116 cells. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ns, not significant.
Abbreviations: IR, radiation; STAT1, signal transducer and activator of transcription 1; MFI, mean fluorescence intensity; SHP1, src homology
2 (SH2) domain containing protein tyrosine phosphatase-1; IF, immunofluorescence; RNA-seq, RNA sequencing; IP, immunoprecipitation;
co-IP, co-immunoprecipitation; TRAF6, TNF receptor associated factor 6; STING, stimulator of interferon genes; IRF3, interferon regulatory
factor 3; CXCLI10, C-X-C motif chemokine ligand 10; CCL5, C-C motif chemokine ligand 5; IFNB, interferon beta 1; NC, negative control.
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FIGURE 5 IR+ ATRi inhibits SHP1 function via promoting the SUMOylation of SHP1 at serine 127 (A) Heatmap of SHP1-conjugated
proteins in HCT116 cells from mass spectrometry data. *, differently altered proteins. (B) SUMOylation analysis of SHP1 in HCT116 cells after
treatment with IR + ATRIi. (C) Venn diagram of common SUMOylation sites predicted by SUMOplot analysis program, JASA, and
GPS-SUMO. (D) Co-IP analysis of SUMOL1 conjugation and the SHP1 phosphatase substrates STAT3, TRAF6 and STING in SHP1-WT and
SHPI1-K127R-Mut HCT116 cells. (E) Immunoblot analysis of key STING signaling proteins in SHP1-WT and SHP1-K127R-Mut HCT116 cells
under different treatments. (F) Relative mRNA levels of CXCL10, CCL5 and IFNB in SHP1-WT and SHP1-K127R-Mut HCT116 cells under
different treatment different regimens. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ns, not significant.

Abbreviations: IR, radiation; SHP1, src homology 2 (SH2) domain containing protein tyrosine phosphatase-1; IP, immunoprecipitation;
SUMOL1, small ubiquitin like modifier 1; STAT3, signal transducer and activator of transcription 3; TRAF6, TNF receptor associated factor 6;
STING, stimulator of interferon genes; IRF3, interferon regulatory factor 3; CXCLIO, C-X-C motif chemokine ligand 10; CCL5, C-C motif
chemokine ligand 5; IFNB, Interferon Beta 1, WT, wild type.
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FIGURE 6 IR +ATRi +anti-PD-L1 exhibits optimal antitumor efficacy and prolonged survival in CT26 and MC38 tumors (A) Treatment
schedule for the subcutaneous tumor models. (B) Tumor volume curve of CT26 tumors treated with IR (n = 6), ATRi (n = 6), anti-PD-L1 (n =
6), or combination therapies (n = 6 in each group). (C) Tumor volume curve of MC38 tumors treated with IR (n = 6), ATRi (n = 6), anti-PD-L1
(n = 6), or combination therapies (n = 6 in each group). (D) Survival analysis of mice bearing CT26 (n = 6) or MC38 tumors (n = 6). (E) Views
of tumors derived from the flanks of MC38-tumor bearing mice (n = 6). (F-G) Bioluminescence imaging of MC38 tumors (F; n = 6) and
statistical analysis (G; n = 6) of total flux of bioluminescence imaging. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

Abbreviations: IR, radiation; PD-L1, programmed death-ligand 1.
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Abstract figure showing the antitumor efficacy of IR +ATRi +anti-PD-L1 and the mechanism

IR + ATRI activates the canonical cGAS-STING-pTBK1-pIRF3 axis by inducing of cytosolic dsDNA, and the non-canonical axis by abrogating
SHP1-mediated TRAF6/STING-p65 complex inhibition, through SUMOylation of SHP1. By boosting the STING-type I interferon signaling, IR
+ ATRi promotes immune activation, turning the cold tumor hot, and in turn facilitate the efficacy of anti-PD-L1 therapy. The red lines

indicate the effects of ATRi.

Abbreviations: IR, radiation; PD-L1, programmed death-ligand 1; SHP1, src homology 2 (SH2) domain containing protein tyrosine
phosphatase-1; IP, immunoprecipitation; SUMOI1, small ubiquitin like modifier 1; TRAF6, TNF Receptor Associated Factor 6; STING,
stimulator of interferon genes; TBK1, TANK Binding Kinase 1; IRF3, interferon regulatory factor 3; DDR, DNA damage response; dsDNA,
double stranded DNA; DDR, DNA damage response; cGAS, cyclic GMP-AMP synthase; IFN, interferon.

While the canonical STING activation has been exten-
sively studied in the context of DNA damage, the non-
canonical STING activation, which pivots on the recruit-
ment of NF-kB-p65 by the TRAF6/STING/TBK1 complex
to facilitate the expression of p65-related inflammatory
genes [46], is less defined. Recent studies have uncov-
ered the role of ATM in non-canonical STING signaling,
which provides therapeutic potential in combination with
IR and ICIs [21, 37]. Regarding these reports, we explored
the role of ATRi in inducing non-canonical STING acti-
vation. Our findings suggest that the ability of ATRi to
induce STING-p65 activation was largely dependent on
its inhibitory effect on SHP1, a dominant inhibitor con-
trolling TRAF6/STING assembly, which was only defined
in the context of viral infection [38]. Further analysis
revealed that IR + ATRi enhanced the SUMOylation

of SHP1 to inhibit its phosphatase activity, which also
partly explained previous findings that IR + ATRi pro-
moted RNA-sensing pathway activation because SHP1 is
a suppressor of RIG-1 mediated RNA-sensing signaling
[47, 48]. However, the mechanism underlying the induc-
tion of SHP1 SUMOylation, for example, whether there
is an E3-ligase specifically targeting SHP1 for SUMOyla-
tion and how ATRi affects the SUMOylation process of
SHPI, remains to be investigated. One possible explanation
is that ATRi may enhance the SUMOylation machinery
because ATRi were reported to induce SUMOylation of
a subset of proteins [49], which was also confirmed in
the GSEA analysis of our transcriptome data. While we
did not directly show the direct effect of SUMOylation
at K127 on SHP1, we found increased SHP1-STAT3 inter-
action after SUMOylation site was mutated. It can be
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concluded that SUMOylation of SHP1 affects its phos-
phatase activity as STAT3 is a generally acknowledged
substrate of SHP1 phosphatase. Despite its inhibitory effect
on tumor-intrinsic STING signaling, SHP1 also functions
as a signaling hub in T cells, DCs and macrophages [50].
Therefore, multiple inhibitors targeting SHP1 were devel-
oped and tested for synergy with immunotherapy [51, 52].
Therefore, the ability of ATRi to inhibit SHP1 activity
could be applied in the context of other immuno-based
therapies. Notably, we also found decreased Shpl mRNA
levels following IR + ATRi treatment compared to IR treat-
ment, indicating that ATRi may also control SHP1 expres-
sion on the translational level. Further studies require
a comprehensive understanding of how the ATRi affects
the gene expression, post-modification and function
of SHP1.

Due to the success of ICIs in solid tumors, extensive
studies have focused on developing prognostic biomarkers
for ICI treatment. Targeting the PD-L1/PD-1 axis inhibits
the exhaustion of TIL to functionally kill the tumors,
making TIL level one of the most important biomark-
ers predicting ICI therapy efficacy. Less-infiltrated tumors
(or “cold” tumors), such as pMMR/MSS CRCs with low
immunogenicity generally respond poorly to ICIs. Thus,
combinational strategies to turn the cold tumor hot may
provide therapeutic potential to improve ICI efficacy. In
alignment with this concept, we combined IR and ATR
inhibition to enhance TILs and evaluated their efficacy
in sensitizing CRC tumors to anti-PD-L1 therapy. While
the results revealed successful synergy, the efficacy was
dependent on STING-mediated innate immune activation
because Sting knockdown nearly completely abrogated the
therapeutic efficacy of the combinational plan. This is
consistent with recent findings that resistance to ICIs in
patients with AMMR CRCs may be due to loss of the cGAS-
STING function, and this axis is essential and could act as
a prognostic biomarker for ICI treatment [29, 53]. More-
over, CT26 and MC38 are considered as MSS/pMMR (low
immunogenicity) and MSI-H/dMMR (high immunogenic-
ity) models, respectively [28, 29, 54]. This indicates that
this plan could be used independently of the microsatellite
or immunogenicity statuses, which provides informative
methods for the clinical use of ICI therapy.

Our work has high clinical relevance. First, clinical
data on the combination therapy of IR and ICIs have
demonstrated promising therapeutic potential [55-57]. The
strategy of adding ATRi to the combination of ICI and
radiotherapy has the potential to overcome the resistance
in pMMR mCRC or improve the current unsatisfactory
efficacy of ICIs in dMMR mCRC. Recently, a review of the
interim data of a phase II trial showed a 25% pathologi-
cal complete response (pCR) rate in patients with locally

advanced CRC (LARC) MSS/pMMR receiving neoadju-
vant short-course radiotherapy followed by chemotherapy
and anti-PD-1 antibody treatment [58]. Here, we provided a
rationale for the clinical investigation of adding ATRi as an
alternative in this neoadjuvant combination, which may
potentially increase the pCR rate and lead to a better qual-
ity of life for patients with LARC. Second, in metastatic
tumors, emerging results from ongoing clinical trials sug-
gest better synergy with immunotherapy when IR was
applied simultaneously to multiple metastatic sites, mainly
attributable to STING-mediated innate immune response
against tumors [59, 60]. By inducing strong activation of
STING signaling, combining ATRi with IR and ICIs may
synergistically achieve a systematic control. Third, mul-
tiple clinical trials are investigating the efficacy of ATR
inhibition monotherapy or ATR inhibition combined with
DNA damage agents such as platinum-based therapy in
solid tumors and inspiring results were observed in CRCs
with several DDR gene defects [61-63]. Notably, a recent
clinical data have reported that the ATRi ceralasertib
(AZD6738) may overcome anti-PD-1 therapy resistance in
patients with advanced melanoma [64]. In this case, we
provided a new perspective on exploiting ATRi in cancer
immunotherapy, which could be further tested and applied
in clinical use.

Despite intriguing findings, there were some limitations
in the present study: (1) The immune profile of subcuta-
neous tumors in syngeneic mice cannot perfectly represent
that of human CRCs. Therefore, the response to ICIs may
vary in human and needs further investigation in clin-
ical practice. (2) While we focus on the tumor-intrinsic
STING activation induced by IR 4+ ATRi, STING signaling
in immune cells were not well-defined and needs further
investigation. (3) We focused on DCs and T cells in the
tumor microenvironment. Future studies require evalua-
tion of an intact immune landscape in CRC models treated
with IR + ATRi + anti-PD-L1.

5 | CONCLUSIONS

The present study demonstrated how the ATRi berzosertib
exploits the cGAS-STING signaling to promote T cell infil-
tration in colorectal tumors, turning the cold tumor hot
and facilitating the efficacy of IR and anti-PD-L1 combina-
tion therapy. This interplay of two checkpoint inhibitors on
the DNA damage stage resulted in promising tumor con-
trol and prolonged survival in murine CRCs with different
microsatellite statuses. Our work raised a new strategy for
CRC treatment. As clinical trials are ongoing to investigate
the efficacy of ATRIi, such a strategy could be evaluated and
optimized for clinical use.
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