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Abstract 
Breast cancer resistance protein (BCRP)/ATP鄄  binding cassette subfamily G member 2 (ABCG2) is an 

ATP鄄  binding cassette (ABC) transporter identified as a molecular cause of multidrug resistance (MDR) in 
diverse cancer cells. BCRP physiologically functions as a part of a self鄄  defense mechanism for the 
organism; it enhances elimination of toxic xenobiotic substances and harmful agents in the gut and biliary 
tract, as well as through the blood鄄  brain, placental, and possibly blood鄄  testis barriers. BCRP recognizes 
and transports numerous anticancer drugs including conventional chemotherapeutic and targeted small 
therapeutic molecules relatively new in clinical use. Thus, BCRP expression in cancer cells directly 
causes MDR by active efflux of anticancer drugs. Because BCRP is also known to be a stem cell marker, 
its expression in cancer cells could be a manifestation of metabolic and signaling pathways that confer 
multiple mechanisms of drug resistance, self鄄  renewal (stemness), and invasiveness (aggressiveness), and 
thereby impart a poor prognosis. Therefore, blocking BCRP鄄  mediated active efflux may provide a 
therapeutic benefit for cancers. Delineating the precise molecular mechanisms for BCRP gene expression 
may lead to identification of a novel molecular target to modulate BCRP鄄  mediated MDR. Current evidence 
suggests that BCRP gene transcription is regulated by a number of trans鄄  acting elements including 
hypoxia inducible factor 1琢  , estrogen receptor, and peroxisome proliferator鄄  activated receptor. 
Furthermore, alternative promoter usage, demethylation of the BCRP promoter, and histone modification 
are likely associated with drug鄄  induced BCRP overexpression in cancer cells. Finally, PI3K/AKT signaling 
may play a critical role in modulating BCRP function under a variety of conditions. These biological events 
seem involved in a complicated manner. Untangling the events would be an essential first step to 
developing a method to modulate BCRP function to aid patients with cancer. This review will present a 
synopsis of the impact of BCRP鄄  mediated MDR in cancer cells, and the molecular mechanisms of 
acquired MDR currently postulated in a variety of human cancers. 

Key words BCRP, ABCG2, multidrug resistance (MDR), transporter, gene expression, tyrosine kinase inhibitors, 
cancer stem cells 

Review 

Multidrug resistance (MDR) is a phenomenon in 
which cancer cells simultaneously become resistant to 

structurally unrelated chemotherapeutic agents when 
exposed to a single chemotherapeutic drug. The 
development of MDR in the course of chemotherapy has 
been considered as a major obstacle in cancer 
treatment. For the last three decades, the biological 
causes underlying MDR have been extensively studied 
and attributed to diverse molecular mechanisms. Active 
efflux mediated by drug efflux pumps has been described 
in a wide variety of cancer cells since  , which 
encodes the membrane transport protein P­glycoprotein 
(P­gp), was isolated from KB cells selected with 
vinblastine in 1986 [1] . P­gp was the first human 
ATP­binding cassette (ABC) transporter protein to be 
identified and is classified as the first  member of the B 
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Figure 1. BCRP consists of 6 
transmembrane helices and homodimerizes to function at the plasma membranes. It pumps natural substrates, including folate, steroid hormones, 
and urate; toxic xenobiotics; and anticancer agents, including conventional chemotherapeutics and tyrosine kinase inhibitors. NBD, nucleotide 鄄  
binding domain to which ATP can bind. 
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subfamily in the ABC transporter superfamily according 
to the Human Genome Organization. In 1992, a second 
MDR­causing transporter named multidrug 
resistance­associated protein 1 (MRP1) was reported [2] 
and found to cause resistance to xenobiotics and 
anticancer agents. MRP1 belongs to ABC subfamily C, 
which consists of 13 members. Although P­gp and 
MRP1 could impart MDR to cancer cells, neither P­gp 
nor MRP1 accounted for all of the transport­based drug 
resistance observed in blast cells from patients with 
acute leukemia when measured by functional efflux 
assays [3] . Multidrug­resistant MCF­ 7/AdrVp cells lacking 
expression of P­gp or MRP1 were described following 
selection of MCF­7 human breast cancer cells with 
doxorubicin and verapamil [4] . In 1998, Doyle  .  [5] 
isolated a novel ABC transporter from MCF­7/AdrVp 
cells and showed by transfection of MCF­7 cells that 
forced overexpression of the transporter reproduced the 
MDR phenotype of MCF­7/AdrVp cells. The new 
transporter was named breast cancer resistance protein 
(BCRP) because it was isolated from multidrug­resistant 
human breast cancer cells  [5] . Two other groups reported 
finding a similar cDNA at approximately the same time, 
which were designated as ABCP  [6]  or MXR  [7] , 
respectively. Some review articles describing the function 
of BCRP in health and disease are available [8­10] . 

This review discusses recent progress in 

understanding BCRP as an MDR transporter and 
focuses on BCRP substrate drugs, particularly novel 
small molecules developed for targeted therapies, which 
have impact on cancer treatment. The review also 
focuses on the molecular regulation of  gene 
expression and summarizes recently proposed 
mechanisms underlying BCRP overexpression in MDR 
cancer cells and cancer stem cells. 

Functional Configuration of BCRP 
According to the Human Gene Nomenclature 

Committee, BCRP is classified as the second member 
of the G subfamily of the ABC transporter superfamily 
(ABCG2). ABC transporters are distinguished by the use 
of ATP hydrolysis for transporter function and exhibit 
extensive conservation of the ATP­binding domains 
throughout evolution across a large number of 
functionally diverse transmembrane proteins [11] . The 
typical ABC transporter consists of two highly conserved 
ATP­binding domains and two transmembrane domains. 
A smaller group of ABC transporters, including 
BCRP/ABCG2, are termed half­transporters. BCRP 
consists of 655 amino acids and possesses six 
transmembrane helices and one ATP­binding site (Figure 
1). Because BCRP is a half­transporter, current evidence 

Tissue distribution 
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suggests that homodimerization or multimerization is 
required for transporter activity as illustrated in Figure 1. 
Our laboratory studied  the effect of co­expression of 
wild­type and dominant­negative BCRP on BCRP­ 
mediated transport in  oocytes [12] . We observed 
that BCRP­mediated transport of daunorubicin was 
significantly reduced in a manner dependent on the 
amount of dominant­negative mutant (S187T) cRNA 
injected into the oocytes, strongly suggesting that it is 
essential for BCRP to at least homodimerize to function. 
Similar observations were made in cultured cells 
transduced with wild­type and mutant forms of BCRP [13] . 
Further biochemical analysis using gel­filtration 
chromatography suggests that BCRP exists as a 
homotetramer that may act only to regulate the level of 
functional homodimerized BCRP transporters [14] . Although 
disulfide bond formation (particularly at cysteine 603) has 
been postulated to participate in dimer/multimer 
formation [15,16] ,  studies in intact cells using 
fluorescence resonance energy transfer techniques 
recently showed that cysteine 603 is not essential for 
dimer/oligomer formation [17] . These findings provide a 
basis for structural and mechanistic analysis of BCRP 
and related ABC transporters. 

Furthermore, to date, mutant forms of BCRP in 
which amino acid arginine at codon 482 is substituted 
with threonine or glycine have been reported in various 
cancer cells when cells were selected with a BCRP 
substrate chemotherapeutic drug such as doxorubicin [18] . 
To the best of our knowledge, expression of these 
mutants has not been reported in clinical specimens [19­21] . 
Because these mutations alter BCRP substrate 
specificity, interactions between chemotherapeutic agents 
and wild­type as well as mutant BCRPs have been 
extensively studied. These studies are summarized in 
the 野Role of BCRP in MDR冶 section of this review. 

Physiological Function of BCRP 
As an efflux transporter for xenobiotics and 

unwanted toxic compounds, BCRP has been 
characterized as an important part of self­defense 
systems in organisms. BCRP substrates are listed in 
Table 1. This is particularly true at polarized cells in 
normal tissues, such as placental syncytiotrophoblasts, 
hepatocytes, and intestinal mucosal cells, where apically 
expressed BCRP protects organisms by eliminating 
substances to the maternal circulation, bile ducts, or 
intestinal lumen, respectively [8] . In brain microvasculature, 
BCRP is located on the luminal surface of microvessel 
endothelium [22]  and hence, may constitute an important 
component of the blood­brain barrier. The tissue 
distribution pattern of BCRP expression reflects its major 
role in protecting cells from potentially toxic xenobiotics 
and in assisting the clearance of xenobiotics from the 

organisms. 
Naturally occurring toxic xenobiotics against which 

BCRP may play a protective role include dietary 
mutagens and carcinogens such as heterocyclic amines 
and polycyclic aromatic hydrocarbons. Area under the 
plasma concentration­time curve (AUC) was observed to 
be higher in  mice compared to wild­type mice 
following oral or intravenous administration of 2­amino­1­ 
methyl­6­ phenylimidazo [4,5­b]pyridine [23]  and 2­amino­3­ 
methylimidazo [4,5­f]quinolone [24] , which are heterocyclic 
amines abundantly contained in cooked meat and fish. 
Polycyclic aromatic hydrocarbons such as benzo[琢  ] 
pyrene, which endogenously exists as benzo [琢  ]pyrene 
sulfate [25] , and micotoxins including aflatoxin B1 [24]  are 
substrates of BCRP. BCRP is also involved in the 
elimination of photosensitive protoporphyrin IX  [26]  and 
hematoporphyrin [27] . Thus, reduced BCRP function may 
increase the risk for developing protoporphyria and 
diet­dependent phototoxicity [26,28] . The photosensitizer 
pheophorbide a, a breakdown product of chlorophyll 
found in mouse chow, was also reported to be a BCRP­ 
specific substrate [29] . In addition to these substances, 
BCRP transports folic acid and its polyglutamate 
conjugates and may play a role in cellular folate 
homeostasis [30,31] . 

BCRP transports conjugates of steroid hormones, 
such as estrone 3­sulfate (E3S), dehydroepiandrosterone 
sulfate, and, to lesser extent, estradiol­17茁  ­D­ 
glucuronide [32,33] . Although there is less evidence, 
17茁  ­estradiol (E2)  [34]  and dihydrotestosterone [35]  have 
been indicated as substrates of BCRP. E2 was also 
shown to effectively inhibit BCRP­mediated transport [34,36] . 
These findings suggest a role for BCRP in hormone 
metabolism and regulation. More recently, Dehghan 
. [37]  identified an association of the non­synonymous 

coding SNP (Q141K) in exon 5 of the  gene with a 
risk of gout based on a genome­wide association study. 
This led to the discovery that BCRP plays a role in 
secretory elimination of uric acid in the proximal tubular 
cells [38] . Moreover, to date, numerous natural or physiological 
substrates for BCRP have been identified and have been 
well reviewed elsewhere [8,39] . 

BCRP is known to be a marker for pluripotent 
hematopoietic and tissue stem cells. A characteristic 
finding on flow cytometric analysis of cells stained with 
Hoechst 33342 dye is that a side population (SP) of cells 
possesses low Hoechst 33342 dye accumulation  [40] , 
which has been shown to be enriched for stem and 
progenitor cells  [41] . Because the SP was absent in bone 
marrow from  mice [42] , BCRP has been recognized 
as a critical determinant of the SP phenotype in not only 
hematopoietic cells, but also in various normal tissues, 
including the liver [43] , lung [44] , heart [45] , mammary glands [46] , 
skeletal muscle [47] , neurons [48] , and corneal stroma [49] , and 
cancer cells [50­57] . 
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Substrate 

Natural substrates/dyes 
2鄄  Amino鄄  1鄄  methyl鄄  6鄄  
phenylimidazo[4,5鄄  b]pyridine 
(PhIP) 
2鄄  Amino鄄  3鄄  methylimidazo 
[4,5鄄  f]quinolone (IQ) 
Benzo[a]pyrene (BP) 3鄄  sulfate 
Aflatoxin B1 
Protoporphyrin IX 

Hematoporphyrin 
Folic acid b 

Estrone 3鄄  sulfate 

Estradiol鄄  17茁  鄄  D鄄  glucuronide 
Dehydroepiandrosterone sulfate 
(DHEAS) 
17茁  鄄  Estradiol 

Dihydrotestosterone 
Uric acid 

Fluorescent substrates/probes 
Prazosin鄄  BODIPY 

Hoechst 33342 

LysoTracker誖  b 

Rhodamine 123 b 

Pheophorbide a 

Sulfasalazine 
D鄄  luciferin 

Chemotherapeutics 
Mitoxantrone (MX) 

SN鄄  38 

SN鄄  38鄄  glucuronide 

9鄄  Aminocamptothecin 
Indolocarbazole topoisomerase I 
inhibitors (e.g. NB鄄  506, J鄄  107088) 
Belotecan 
Doxorubicin (DOX) b 

Daunorubicin b 

Epirubicin b 

Transport 
Km 

(滋  mol/L) 
Assay system a Ref 

Inhibition 
IC50 

(滋  mol/L) 
Ki 

(滋  mol/L) 
Substrate 

used 
Assay system a Ref 

17.8 

6.8 
16.6 
44.2 

0.7 

7.0 

4.0 

26.0 

>500 
5.0 
2.5 

MDCK/BCRP1 (TP) 

MDCK/BCRP (TP) 

HCT116 NRI (TP) 
MDCK/BCRP (TP) 
Bcrp1 -/- BM, 
AML/BCRP (AC) 
Sf9 vesicle (AC) 
HEK/BCRP vesicle (AC) 
K562/BCRP vesicle (AC) 
P388/BCRP vesicle (AC) 
HEK/BCRP vesicle (AC) 
P388/BCRP vesicle (AC) 

L. lactis/BCRP (AC) 

Mx-RPE (EF) 
X. Oocyte 

Selected Cancer Cells 
HEK/BCRP (AC) 
A5449/BCRP (SP 
analysis) 
HEK/BCRP (AC) 
HEK/BCRP (AC) 
X. Oocyte (AC) 
HEK/BCRP, Selected 
Cancer Cells (AC) 
SB鄄  BCRP鄄  M鄄  VT (AC) 
HEK/BCRP (AC) 

Sf9 vesicle (ATP) 
X. Oocyte (EF, AC) 
PC鄄  6/SN2鄄  5H 
vesicles (AC) 
PC鄄  6/SN2 鄄  5H vesicles 
(AC) 
HEK/BCRP 
PC鄄  13/BCRP (AC, EF) 

MDCKII/BCRP (TP) 
Sf9 vesicles (ATP) 
Sf9 vesicles (ATP) 
HEK/BCRP (EF) 
X. Oocyte (AC, EF) 

[23] 

[24] 

[25] 
[24] 
[26] 

[27] 
[31] 
[33] 
[32] 
[31] 
[32] 

[34] 

[35] 
[38] 

[119] 
[86] 
[40] 

[86] 
[86] 
[12] 
[29] 

[122] 
[125] 

[85] 
[12] 
[94] 

[94] 

[91] 

[97] 
[95] 
[85] 
[85] 
[86] 
[12] 
[86] 

55

4.8 

61

1.6 

E3S 

H33342 
TPT 

E3S 

E3S 

P388/BCRP vesicle (AC) 

L. lactis/BCRP vesicle (AC) 
K562/BCRP (AC) 

P388/BCRP vesicle (AC) 

HEK/BCRP vesicle (AC) 

[32] 

[34] 
[36] 

[32] 

[117] 
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BCRP Expression in Human Cancers 

Acute myelogenous leukemia (AML) 

Acute myelogenous leukemia (AML) is a malignant 
neoplastic disease in which BCRP expression has been 
the best characterized. Ross  . [58]  initially  detected 

mRNA at relatively high levels in approximately 
one third of 20  AML samples, suggesting that 
plays a role in resistance to conventional 
chemotherapies. In the same set of 20 samples, 
expression seemed to be correlated with MDR1 
expression (  = 0.66) although the relationship was not 
statistically significant. Subsequently, we showed that 

mRNA expression correlated with 
resistance to the cyclin­dependent kinase (CDK) inhibitor 
flavopiridol in blast cells from patients with AML [19] . In a 
study with paired AML blast cell samples collected 
before treatment and at the time of relapse or 

refractoriness, van den Heuvel­Eibrink  .  [59]  found 
that  mRNA was higher in the relapsed or 
refractory samples. Benderra  .  [60]  found that 
pre­treatment high  mRNA level was a prognostic 
factor for achieving a complete remission (CR) and 
associated with lower disease­free survival in 149 
patients. Furthermore, in a study of 40 patients with 
newly diagnosed AML, Abbott  . [61]  found that 
mRNA expression was higher in AML samples (78% ) 
than in normal bone marrow; however, only 7% of 
patients had 野functional冶 levels of  mRNA. In that 
study, there was no correlation between 
expression and patient outcomes or clinical 
characteristics, but the data suggested the presence of a 
small subpopulation of 野primitive leukemic stem cells 
with intrinsic drug efflux capacity冶 in which  mRNA 
expression was confined. This notion was supported by 
the findings of van der Kolk  . [62] , who detected BCRP 
protein expression in subpopulations of cells with an 
immature phenotype (CD34 + ) but found no increase in 

Bisantrene b 

Methotrexate c 

Imatinib 

Nilotinib 

Dasatinib 
CI1033 (Canertinib) 
Gefitinib (Iressa, ZD1839) 
Erlotinib hydrochloride 
(Tarceva, OSI鄄  774, CP鄄  358774) 
Lapatinib ditosylate (Tykerb, 
GW572016) 
Sunitinib malate (Sutent, 
SU11248) 

Sorafenib (Nexavar) 
Axitinib (AG013736) 
Flavopiridol (Alvocidib) 

681 
1340 
1410 
0.15 

0.008 

0.18 

MCF鄄  7/AdrVp (AC) 
MCF鄄  7/MX vesicle (AC) 
HEK/BCRP vesicle (AC) 
HEK/BCRP vesicle (AC) 
HiFive vesicles (ATP) 
HEK/BCRP (AC) 
HiFive vesicles (ATP) 
K562/BCRP 
Mef/BCRP (AC) 
MDA鄄  MB231/BCRP (AC) 
HEK293/BCRP R鄄  5 (AC) 
HEK293/BCRP R鄄  5 (AC) 

Bcrp1 -/- mice (BD) 

HiFive vesicles (ATP) 
MDCK/BCRP (TP) 
MDCK/P鄄  gp&BCRP (TP) 
MDCK/BCRP (TP) 
MCDK/BCRP (TP) 
X. Oocytes (AC) 

Substrate 
Transport 

Km 

(滋  mol/L) 
Assay system a Ref 

Inhibition 
IC50 

(滋  mol/L) 
Ki 

(滋  mol/L) 
Substrate 

used 
Assay system a Ref 

[119] 
[30] 
[31] 

[131] 
[130] 

[76] 
[130] 
[132] 
[136] 
[139] 
[144] 
[144] 

[152] 

[157] 
[159] 
[158] 
[161] 
[164] 

[12] 

0.9 

0.4 
0.13 

0.69 
0.05 
跃2.0 

H33342 

MTX 
H33342 
H33342 

H33342 
E3S 

MX 

HEK/BCRP vesicle (AC) 
K562/BCRP (AC) 
K562/BCRP (AC) 

K562/BCRP vesicle (AC) 

X. Oocyte (AC) 

[112] 

[131] 
[132] 
[132] 

[112] 
[107] 

[12] 

a Experimental condition used to evaluate BCRP鄄  mediated transport of each compound: BCRP, with forced expression of BCRP; TP, transport 
assay across monolayer of cells; AC, intracellular accumulation study; ATP, ATPase activity assay; EF, efflux study (retention assay); BD, brain 
distribution in vivo in animals. b Reported substrates for mutant BCRP (R482T and R482G). c Reported substrates for wild鄄  type BCRP (R482). 
IC50, 50% inhibition concentration; E3S, estrone 3鄄  sulfate; TPT, topotecan; MTX, methotrexate; H33342, Hoechst 33342 dye; DOX, doxorubicin; 
MX, mitoxantrone; BM, bone marrow. 
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these BCRP +  subpopulati ons at time of relapse in 20 
AML patients. Suvannasankha  . [20]  also found that 

mRNA expression correlated poorly to BCRP 
protein expression but observed that  mRNA may 
be limited to small subpopulations of blast cells 
pretreatment. 

There is compelling evidence, accumulated over the 
past decade, that BCRP is expressed in premature AML 
blast cell subpopulations. [9] The highest BCRP expression 
and function were found in stem­like  CD34 + /CD38 ­  cells 
in both normal and AML marrows  [63] . Although blocking 
BCRP function somewhat reversed drug resistance of 
CD34 + /CD38 ­ AML blast cells to mitoxantrone, it had little 
effect on the intracellular accumulation of mitoxantrone. 
Thus, additional factors are likely involved in the drug 
resistance exhibited by these cells [63] . An evaluation of 
the mRNA expression of 47 human ABC transporters in 
blast cells from 18 AML patients who achieved CR and 
13 AML patients who were refractory to induction 
chemotherapy revealed no difference in ABC transporter 
expression between the CR and refractory groups; 
however, the refractory group had significantly higher 
expression of BCRP and/or MDR1 in CD34 + /CD38 ­ 
cells [64] . Moreover, a study with 26 bone marrow samples 
from patients with  AML done by de  Figueriedo­ 
Pontes  . [65]  showed that leukemia  stem cell 
population, defined as CD34 + /CD38 ­ /CD123 + , showed 
higher BCRP and P­gp expression than other subsets of 
cell populations, implying that co­expression of both 
BCRP and P­gp in leukemia stem cells may augment 
MDR synergistically. Thus, more recent studies of BCRP 
expression in AML likely confirm that BCRP is often 
co­expressed with P­gp and connotes a worse prognosis 
[64­68] . Furthermore, BCRP and P­gp expression appear to 
be associated with subpopulations of cells with primitive 
characteristics, such as expression of CD34 but not 
CD38  [63,65,68,69] , although two studies showed no 
association of BCRP with CD34 expression (but not 
CD38) [70,71] . 

Acute lymphoblastic leukemia(ALL) and chronic 
myelogenous leukemia (CML) 

There is limited information available for BCRP 
expression in acute lymphoblastic leukemia (ALL). To 
date, BCRP expression is suggested to be detected at 
the highest level in B­lineage ALL, although no definite 
trends were shown between BCRP expression and 
prognosis of ALL [72,73] . A study of BCRP expression in 
childhood ALL showed that  mRNA was not 
increased in specimens from children in relapse [73] . No 
relationship was found between  mRNA expression 
and relapse­free survival in this study. Our study of 
BCRP function and mRNA and protein expression in 
blast cells from 30 adult ALL cases by Suvannasankha 

. [21]  revealed a relatively high frequency of positive 
staining (37% to 47% of cases) with a variety of 

anti­BCRP antibodies; however, there was poor 
concordance of antibody staining, mRNA expression, 
and functional assays in this study. Positive staining with 
the BXP21 mouse anti­human monoclonal antibody to 
BCRP was predictive of a shorter disease­free survival. 

In case of chronic myeloid leukemia (CML), 
previous studies have indicated a high expression of 
BCRP in premature CML cell populations. Jordanides 
. [74]  detected aberrant overexpression of BCRP protein 

in CD34 +  cells derived from CML patients. BCRP 
expression was detected in over 25% of cells from 5 out 
of 7 individual subjects, and BCRP function was 
confirmed by active efflux of mitoxantrone out of the 
cells. Moreover, quantitative gene expression analysis 
indicated a strong differentiation­associated decrease of 

mRNA expression in mononuclear cells from 
patients with CML [75] . In this study, BCRP was more 
highly expressed in lin ­ /CD34 + /38 ­ cells derived from CML 
than in normal bone marrow cells. Although imatinib was 
shown to be a substrate of BCRP  [76,77] , BCRP­ mediated 
active efflux of imatinib has not yet  been observed in 
CD34 + CML cells [74,78] . These findings strongly suggest that 
BCRP expression in CML is confined in primitive cell 
populations, but the functionality of BCRP in primitive 
cells is not completely understood. 

Solid tumors 

BCRP has been reported to be overexpressed in 
solid tumors. Immunohistochemical studies with BXP­21 
antibody  demonstrated a high frequency of BCRP 
immunoreactivity among a panel of 150 untreated human 
solid tumors comprising 21 tumor types [79] . Specificity of 
immunohistochemistry was confirmed by the detection of 
a 72 kDa band representing BCRP on Western blots. 
According to this article, BCRP expression was widely 
present in untreated human solid tumors . Kawabata 

. [80]  used reverse transcription­polymerase chain 
reaction (RT­PCR) and detected high levels of 
mRNA expression in 6 of 8 non­small cell lung cancer 
(NSCLC) cell lines and 5 (22%) of 23 non­small cell lung 
tumor tissues. In these lung cancer cell lines, topotecan 
efflux was correlated with the levels of  mRNA. In 

models, BCRP overexpression is commonly 
observed in cells derived from various types of human solid 
tumors selected with drugs, such as mitoxantrone [5,7,81,82] , 
topoisomerase inhibitor topotecan [82] , flavopiridol [83] , and 
imatinib [84] , and seems to be independent of P­gp or MRP 
expression. 

Role of BCRP in MDR 

Conventional chemotherapies known as BCRP 
substrates 

BCRP functions as an efflux pump for a wide variety 
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of xenobiotics inc luding many approved cancer 
chemotherapies (Table 1). Therefore, emergence of 
BCRP renders cancer cells resistant to structurally 
unrelated drugs simultaneously, fulfilling the definition of 
MDR. BCRP is also known as mitoxantrone resistance 
protein (MXR) because it was isolated from human colon 
carcinoma cells (S1M1 80) after  selection with 
mitoxantrone [7 ] . Mitoxantrone is shown to be a 
substrate of BCRP in  assays [12,85] . Strong cellular 
resistance to mitoxantrone is attributable to 
BCRP­mediated efflux, which reduces its intracellular 
accumulation [5,7,12,81,86] . Following selection with mitoxantrone, 
BCRP overexpression was observed not only in colon 
carcinoma cell lines (S1M1 80, HT29RNOV, KM12/MX) 
but also in a variety of cancer cell lines including breast 
carcinoma (MCF­7/MX8, MCF­7/Mitox, MDA­MB­ 
231RNOV), gastric carcinoma (EPG85­257RNOV), 
fibrosarcoma (EPF86­079RNOV),  NSCLC (H460/MX), 
glioblastoma (SF295/MX), andmyeloma (8226/MR20) [81,87,88] . 
Thus, BCRP is a component of the cellular defense 
mechanism elicited in response to mitoxantrone. 

Accumulated evidence on MDR shows that BCRP 
plays a critical role in the development of resistance to 
irinotecan­based therapy. Topotecan is a type I 
topoisomerase inhibitor derived from camptothecin. 
Selection with topotecan in a human ovarian cancer cell 
line (IGROV1/T8)  [82]  and a breast cancer cell line 
(MCF­7/TPT3000) [89] was found to induce overexpression 
of BCRP, resulting in acquired resistance to 10­hydroxy­ 
7­ethylcamptothecin (SN­38), the active metabolite of 
irinotecan; 9­aminocamptothecin; and, to a lesser extent, 
irinotecan [82,89,90] . Overexpression of both the wild­type and 
R482T forms of BCRP conferred resistance to 9­ 
aminocamptothecin, which was associated with reduced 
intracellular drug accumulation, but did not confer 
resistance to 9­nitrocamptothecin. These observations, in 
addition to the knowledge that BCRP confers resistance 
to topotecan and SN­38, suggest that polar residues at 
the 9 or 10 position of camptothecin may be important to 
facilitate interactions with BCRP [91] . BCRP was also 
induced in cancer cells by selection with SN­38 [92,93] , and 
further transport study showed that both SN­38 and 
SN­38­glucuronide are substrates of BCRP [94] . 
mRNA levels were higher in hepatic metastases obtained 
from patients after irinotecan­based chemotherapy than 
in irinotecan­naive metastases, indicating that BCRP was 
involved in irinotecan resistance  [93] . Belotecan, a 
semi­synthetic topoisomerase I inhibitor, was shown to 
be transported by BCRP [95] . More recently, novel effective 
camptothecin analogues of the 7­oxyiminomethyl 
compound, ST1968 and ST1978, were  identified as 
substrates of BCRP [96] . 

Although BCRP expression was enhanced in MCF­7 
cells after being selected with either doxorubicin 
(MCF­7/AdrVp cells) or mitoxantrone (MCF­7/MX8 cells), 

a high level of efflux was noted with rhodamine 123 in 
MCF­7/AdrVp cells, whereas such efflux was not seen in 
MCF­7/MX8 cells [87] . This was later explained by the 
presence of a mutation at codon 482 in the mRNA 
sequence of  , with replacement of the wild­type 
arginine by threonine or glycine (R482T or R482G) [18,97] . 
Compared to wild­type  , overexpression of either 
the R482T or R482G  mutants conferred greater 
resistance to anthracyclines, including doxorubicin, 
daunorubicin and epirubicin, and bisantrene [5,86,98] . Because 
intracellular accumulation of these substrate drugs was 
significantly lowered in cells expressing the mutant 
protein [12,86] , mutation at codon 482 has a major impact 
on substrate specificity of BCRP. Similar findings were 
made for codon 482 of murine  /  , except that 
the mutations were to methionine or serine [99] . Active 
efflux of hydrophilic antifolates is also affected by the 
mutations. Wild­type BCRP is capable of transporting 
methotrexate  [30,31,100]  and its polyglutamate form  [30,31] , 
whereas  the mutants likely lack the ability to efflux 
methotrexate. However, one report described that human 
embryonic  kidney cells stably transfected with 
R482G­BCRP cDNA displayed resistance to hydrophilic 
antifolates, including methotrexate, raltitrexed, and 
GW1843, relative to parental cells [101] . This discrepancy 
needs to be addressed further. In addition, hydrophobic 
antifolates may be substrates of both mutants, but not 
wild­type (R482) BCRP. These mutants have been 
shown to confer high­level of resistance to lipophilic 
antifolate inhibitors of dihydrofolate reductase (e.g., 
trimetrexate and piritrexim ) and thymidylate synthase 
(e.g., AG337 and AG377) [102] . Indeed, the lipophilic antifolate 
analogue chromophore tetramethylrosamine has been 
identified as a substrate of both BCRP R482T and 
R482G but not wild­type BCRP [102] . Codon 482 mutation 
to methionine in human BCRP has also been reported [103] . 
To date, however, these mutations have only been found 
in cultured drug­selected cell lines. Similarly, no BCRP 
mutations have been observed in clinical samples of 
blast cells obtained from leukemia patients [19,20,72] . 

Compared to control transfectants, BCRP­ 
transfected cells have been shown to display only 
minimal resistance to etoposide and depsipeptide [86]  but 
no resistance to cisplatin, paclitaxel, or vincristine [5] . 
Recently, the prostate cancer cell line LNCaP was 
shown to display overexpression of phosphorylated 
BCRP after  selection in the presence of 
docetaxel, resulting in enhanced decetaxel resistance. 
This suggests that post­translational modification (PTM) 
in response to drug may be involved in substrate 
specificity or functionality of BCRP [104] . 

Inhibitors for modulation of BCRP function 

Because BCRP plays a role in MDR, specifically 
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modulating BCRP function to sensitize BCRP­ 
overexpressed cancer cells to chemotherapies is  of 
pharmacological interest. To date, several specific 
inhibitors of BCRP have been reported, and some are 
currently undergoing clinical trials or are available to treat 
patients. Among them, fumitremorgin C (FTC) is one of 
the most specific inhibitors for BCRP and has been 
frequently used to test BCRP activity in a wide variety of 
experiments. FTC, a mycotoxin isolated from 
fumigates, was the first reported specific inhibitor for 
BCRP [105, 106]  and is active at micromolar concentra 鄄  
tions [31,87,107] . Ko143 is a derivative of FTC and 
approximately 10 times more potent at BCRP inhibition 
than FTC [108,109] . GF120918 (also known as Elacridar) was 
first developed as a P­gp inhibitor and has been shown 
to block BCRP function. Indeed,  GF120918 inhibited 
BCRP­mediated mitoxantrone transport with an IC50 

value of 0.31 滋  mol/L  [ 110 ] . A pharmacokinetic study 
demonstrates the effectiveness of GF120918  , 

showing co­administration of GF120918 can increase the 
oral bioavailability of topotecan,  a BCRP substrate drug, 
from 30% to 90%  [111] . Other BCRP inhibitors include 
gefitinib (Iressa, ZD1839) [112] , flavopiridol [12] , 6­prenylchrysin 
(a hydrophobic flavone)  [110] , reserpine  [26,113] , taxane 
derivatives (i.e.,  ortataxel and tRA96023) [114] , estrone and 
antiestrogens (e.g., tamoxifen and TAG­related 
compounds)  [115] , imatinib  [112,116] , certain HIV protease 
inhibitors [109] , and 3 ­hydroxymethylglutaryl coenzyme A 
reductase inhibitors [117] . Recently, synthetic compounds 
related to piperazinopyranones and 
phenalkylaminobenzopyranones were identified to be 
strong inhibitors of BCRP comparable to FTC [118] . BCRP 
inhibitors are summarized in Table 2. 

Specific probe substrates to characterize BCRP 
function 

To date, several probe substrates for BCRP have 

FTC 

Ko143 
Elacridar (GF120918) 
6鄄  Prenylchrysin 
Reserpine 
Ortataxel 
tRA96023 
Tamoxifen and antiestrogens (TAG compounds) 
Phenalkylamine derivatives (5b, 5c) 
Piperazine derivatives (4c) 
Daunomycin 
Anti鄄  HIV therapeutics 

Amprenavir 
Atazanavir 
Lopinavir 
Nelfinavir 
Saquinavir 
Delavirdine 
Efavirenz 

HMG鄄  CoA reductase inhibitors 
Atorvastatin 
Cerivastatin 
Fluvastatin 
Pitavastatin 
Rosuvastatin 
Simvastatin acid 

Inhibitor IC50 (滋  mol/L) Substrate used Assay system a Ref 

0.25 

0.01 
0.31 
0.29 
<10 
<10 
<10 

~ 1 
~10

59 

181
69.1 

7.66 
13.5 
27.4 
18.7 
20.6 

1.0 
0.30 
0.55 
0.47 

14.3 
18.1 

5.43 
2.92 

15.4 
18.0 

MX 
MTX 
E3S 
PhA 
PhA 
MX 
MX 
H33342 
MX 
MX 
TPT 
MX 
MX 
E3S 

PhA 
PhA 
PhA 
PhA 
PhA 
PhA 
PhA 

E3S 
E3S 
E3S 
E3S 
E3S 
E3S 

S1M1 80 vesicle (ATP) 
HEK/BCRP vesicle (AC) 
K562/BCRP vesicle (AC) 
MDCK/BCRP (TP) 
MDCK/BCRP 
Sf9 vesicles 
Sf9 vesicles 
Saos2/BCRP (AC) 
8226/MR20 
8226/MR20 
K562/BCRP (AC) 
HCT116/R (AC) 
HCT116/R (AC) 
P388/BCRP vesicle (AC9 

MDCK/BCRP (TP) 
MDCK/BCRP (TP) 
MDCK/BCRP (TP) 
MDCK/BCRP (TP) 
MDCK/BCRP (TP) 
MDCK/BCRP (TP) 
MDCK/BCRP (TP) 

HEK/BCRP vesicle (AC) 
HEK/BCRP vesicle (AC) 
HEK/BCRP vesicle (AC) 
HEK/BCRP vesicle (AC) 
HEK/BCRP vesicle (AC) 
HEK/BCRP vesicle (AC) 

[87] 
[31] 

[107] 
[109] 
[109] 
[110] 
[110] 
[113] 
[114] 
[114] 
[115] 
[118] 
[118] 

[32] 

[109] 
[109] 
[109] 
[109] 
[109] 
[109] 
[109] 

[117] 
[117] 
[117] 
[117] 
[117] 
[117] 

Footnotes as in Table 1. 

Ki (滋  mol/L) 
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been reported. These agents are useful for evaluating 
the effect of drugs on BCRP­mediated transport. The 
fluorescence­labeled compound, BODIPY­prazosin, is 
one of the most frequently used probe substrates for 
BCRP  [87,119] . LysoTracker Green誖  and rhodamine 123 
were described as good substrates for both codon 482 
mutants of BCRP but not for wild­type BCRP [12,87] . 
Mitoxantrone is often used as a fluorescent substrate in 
flow cytometry­based functional assays [7,86] , but it is also 
a weak substrate for P­gp. Robey  . [29]  demonstrated 
that pheophorbide a is a fluorescent substrate specific to 
wild­type and mutant BCRP, and that using a flow 
cytometric assay with this compound is convenient to 
determine expression of  functional BCRP. Earlier 
pharmacokinetic studies showed that the transport of 
sulfasalazine across a monolayer of Caco­2 human 
colon carcinoma cells from the basolateral to apical side 
was significantly reduced by FTC but not by cyclosporine 
A, a typical inhibitor for P­gp, indicating that 
sulfasalazine is a substrate of BCRP [120] . In  mice, 
the AUC of sulfasalazine was over 100­fold greater than 
that in wild­type mice [121] . Affinity of sulfasalazine to 
BCRP was estimated at approximately 70 滋  mol/L by 

membrane vesicle study [122] . Furthermore, clinical 
studies revealed that measured plasma concentrations 

correlate with single nucleotide polymorphisms in 
the  gene (c.421C>A) [123] . Selection of T­lymphocytes 
by sulfasalazine caused BCRP overexpression [124] . These 
findings suggest that sulfasalazine can be used as a 
probe substrate to evaluate BCRP function. More 
recently, intracellular accumulation of D­luciferin was 
shown to be modulated by FTC [125] . D­luciferin 
bioluminescent output  was substantially 
influenced by BCRP function within the regions of 
interest. Furthermore, FTC had no effect on the 
bioluminescent output in cells overexpressing human 

,  , or  genes; therefore  D­luciferin­ 
based bioluminescent imaging has been suggested as a 
new high­throughput method for  identifying modulators of 
BCRP function [126] . 

BCRP and Molecular Targeted Therapy 
Tyrosine kinase inhibitors (TKIs) for BCR鄄  ABL 

Previously, 魻  zvegy­Laczka  .  [112]  described a 
clear interaction between tyrosine kinase inhibitors, 
including imatinib mesylate (originally known as Gleevec, 
STI571) and BCRP, which modulate BCRP transport 
and stimulate BCRP­specific ATPase activity. There are 
conflicting reports on whether imatinib is a substrate 
transported by BCRP. Imatinib is shown to be a 
substrate for BCRP in human embryonic kidney HEK293 
cells transfected with  [76] , whereas it is not in 

Soas2 cells with forced expression of BCRP  [116]  or 
primitive CML CD34 +  cells aberrantly overexpressing 
BCRP [74] . The bioavailability, pharmacokinetics, and 
disposition of imatinib are shown to be influenced by 
BCRP, suggesting that BCRP functions as an imatinib 
transporter  [127] . Subsequently, chronic exposure of 
Caco­2 human colon carcinoma cells to imatinib is found 
to result in induction of BCRP expression [84] , representing 
a novel potential mechanism of acquired drug resistance 
in cancer patients treated with imatinib over a long time. 
Although BCRP did not confer a survival advantage to 
imatinib­treated Saos2 cells compared to 
mock­transfected ones [116] , this could be because Saos2 
are not growth­ or survival­dependent upon the 
intracellular targets of imatinib, including BCR­ABL, 
c­KIT, or platelet­derived growth factor receptor 
(PDGFR). We examined the effects of BCRP expression 
on cellular resistance to imatinib in human CML­derived 
K562 cells, whose growth is dependent on BCR­ABL, 
and demonstrated that forced expression of BCRP in 
these cells caused resistance to imatinib cytotoxicity that 
was overcome by the BCRP­specific inhibitor FTC [128] . 
Interestingly, this  effect was attenuated by 
imatinib­mediated inhibition of  BCR­ABL, which in  turn 
down­regulated BCRP expression post­ transcriptionally 
via the PI3K/AKT  pathway. This imatinib­mediated 
down­regulation of  BCRP was further confirmed by 
Dohse  . [129] ; however, detailed mechanisms should be 
further examined. 

Nilotinib (Tasigna, AMN107) is a second­generation 
BCR­ABL TKI used to surmount resistance or 
intolerance to imatinib in patients with Ph (+) CML. 
Photoaffinity labeling assays [130]  and kinetic analyses [131] 
have shown that nilotinib competitively inhibits BCRP­ 
mediated drug efflux. The Ki value of nilotinib for 
BCRP­mediated methotrexate transport was 0.69 滋  mol/L, 
suggesting that nilotinib is a highly potent inhibitor of 
BCRP [131] . Nilotinib was also shown to be a high­affinity 
substrate of BCRP and P­gp [132] . Because BCRP is highly 
expressed on CML CD34 +  cells [74] , several studies have 
been conducted to determine  whether the inhibition of 
BCRP activity potentiates the effect of nilotinib on 
apoptosis, BCR­ABL inhibition, or  CML CD34 +  cell 
proliferation. So far, it is unlikely that BCRP and P­gp will 
have any effect on the clinical  response to this drug [133] . 
BODIPY­labeled nilotinib  was also found to be a 
substrate for P­gp and BCRP and has been proposed as 
a potentially useful probe for functional analysis of both 
transporters in cancer cells and other preclinical studies [134] . 

Dasatinib (Sprycel, BMS­354825) is another second­ 
generation dual kinase inhibitor of ABL and SRC. In 

assays, dasatinib is approximately 300 times more 
active than imatinib and effective against most 
imatinib­resistant BCR­ABL active­site mutants, except 
the T315I mutation [135] . Ko143 significantly increased 

Takeo Nakanishi et al. Role of BCRP in MDR 

81



Chinese Journal of Cancer Chinese Journal of Cancer Chinese Journal of Cancer Chinese Journal of Cancer Chinese Journal of Cancer Chinese Journal of Cancer Chinese Journal of Cancer Chin J Cancer; 2012; Vol. 31 Issue 2 

dasatinib uptake in BCRP­overexpressing cell lines and 
reduced the IC 50  of dasatinib [136] .  brain distribution 
studies showed that brain­to­plasma concentration ratio 
of dasatinib was significantly higher in 
than in  mice and increased in wild­type mice 
with co­administration with Ko143 [137] . These findings are 
a clear demonstration that dasatinib is a potent substrate 
for BCRP. 

Bosutinib (SKI­606), a third­generation TKI inhibitor, 
is useful in patients whose leukemia is resistant to both 
first­ and second­generation TKI inhibitors. Unlike 
imatinib, bosutinib inhibits both SRC and ABL [138] . Current 
evidence regarding the interaction of bosutinib with ABC 
transporters is limited. In  growth assays, neither 
P­gp nor BCRP induced resistance to bosutinib, although 
their transport activities were inhibited by bosutinib at 
relatively high concentrations (> 2 滋  mol/L) [132] . 

TKIs for epidermal growth factor receptor 
(EGFR, HER1) and HER2 

CI1033 (also named canertinib) was the first EGFR 
TKI that was shown to be a substrate of BCRP. 
Intracellular accumulation of CI1033 was diminished in 
BCRP­expressing T98G glioblastoma and HCT8 colon 
cancer cells [139] . This was further confirmed by a trans鄄  
cellular transport study using MDCK/BCRP cells [140] . 

Gefitinib (Iressa, ZD1839) is an orally active, small­ 
molecule inhibitor of EGFR and a first­generation TKI. 
Gefitinib, a strong inhibitor of BCRP, modulated ATPase 
activity of BCRP in a plasma membrane vesicle study [112] 

and reversed BCRP­mediated resistance to SN38 [141,142] 
and topotecan [143] . Gefitinib accumulation was lowered in 
HEK293 cells transfected with BCRP, suggesting that 
gefitinib is a substrate of BCRP [144] . Another study showed 
that BCRP conferred resistance to gefitinib [141,145]  and that 
chronic exposure of colorectal carcinoma cells to gefitinib 
induced BCRP expression [146] . Hence, BCRP has  been 
postulated to play a critical role in cellular resistance to 
and pharmacokinetic disposition of gefitinib.  The 
systemic exposure of gefitinib was greater in patients 
heterozygous at the BCRP c.421C>A locus than in 
patients with wild­type BCRP [144] . In an animal 
pharmacokinetic study, brain accumulation of gefitinib 
increased approximately 70­fold in  mice 
compared to wild­type mice, suggesting that the 
distribution of gefitinib to the brain is highly restricted by 
both P­gp and BCRP  [147] . Because concomitant 
administration of gefitinib with topotecan could enhance 
topotecan penetration to the central nervous system, 
co­administration of gefitinib with a BCRP substrate drug 
may provide a potential benefit for patients with brain 
tumors. 

Erlotinib hydrochloride (Tarceva, OSI­774, CP­ 
358774), another orally­active EGFR TKI, is similar to 
gefitinib in structure. Erlotinib reverses P­gp­ and 

BCRP­mediated MDR in cancer cells through direct 
inhibition of their drug efflux function [148] . Erlotinib 
competitively inhibited BCRP­mediated estrone 3­sulfate 
(E3S) transport with an IC 50  value of 0.13 滋  mol/L, which 
is comparable to FTC, suggesting that erlotinib is one of 
the most powerful inhibitors for BCRP among the TKIs [107] . 
An  accumulation study in HEK293 cells 
transfected with BCRP showed that erlotinib is a 
substrate for BCRP [144] . Furthermore,  systemic 
exposure of orally administered erlotinib was significantly 
increased in  mice compared with 
wild­type mice, and brain distribution of erlotinib was 
observed to be  restricted by both BCRP and P­gp [149] . 
According to the possible clinical consequences of 
interactions between P­gp/BCRP­inhibiting substrates 
and erlotinib, erlotinib pharmacokinetics  may be 
affected by drug­drug interaction on P­gp or BCRP, 
which needs to be addressed in patients. 

Lapatinib ditosylate (Tykerb, GW572016) is an orally 
active, dual tyrosine kinase inhibitor that interrupts  both 
EGFR and HER2 signaling and is used primarily to treat 
breast cancer [150] . Lapatinib sensitized MDR cells  by 
inhibiting BCRP transport activity directly [151] . The  brain­ 
to­plasma ratio of lapatinib was over 10­fold higher  in 

mice compared to  mice, 
suggesting that lapatinib is a substrate for BCRP [152] . 
Synergistic interactions were seen with lapatinib and 
SN38, and this effect was attributed to increased 
intracellular accumulation of SN38 as a result of the 
inhibitory effect of lapatinib on BCRP­mediated SN38 
efflux [153] . 

Vandetanib (Zactima, ZD6474) is a multitargeted 
TKI that affects EGFR and VEGFR2, and is RET kinase. 
Chronic exposure of HT­29 colorectal cancer cells to 
vandetanib reportedly induced BCRP expression [146] ; 
however, BCRP overexpression did not confer resistance 
to vandetanib in drug­resistant S1M1 80 cells  [154] . 
Vandetanib treatment significantly  increased the 
intracellular accumulation of BCRP substrate drugs in a 
dose­dependent manner [154] ,  suggesting that vandetanib 
functions as an MDR sensitizer. 

TKIs for Class III kinases (c鄄  KIT and PDGFR) 

Sunitinib malate (Sutent, SU11248) is a  multi鄄  
targeted small­molecule TKI used to treat renal cell 
carcinoma (RCC) and imatinib­resistant gastrointestinal 
stromal tumors [155] . Sunitinib was observed to inhibit 
BCRP transport activity and stimulate its ATPase activity 
in a concentration­dependent manner [156,157] . Direct binding 
of sunitinib to BCRP was demonstrated by photoaffinity 
labeling and antibody binding assays [157] . A recent 
transport study showed that sunitinib is a substrate for 
both BCRP and P­gp [158] . An  pharmacokinetic 
analysis revealed a 23­fold increase in brain 
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accumulation of sunitinib in  mice, 
whereas there was only a 2.3­fold increase in 
mice and no increase in  mice, suggesting that 
sunitinib is cooperatively restricted by both P­gp and 
Bcrp1 at the blood­brain barrier [159] . 

Sorafenib tosilate (Nexavar) is another multitargeted 
TKI used to treat hepatocellular carcinoma  (HCC) and 
RCC [160] . Like sunitinib, sorafenib was shown to potently 
inhibit BCRP­mediated drug efflux [156] . A recent 
transcellular study showed that sorafenib is efficiently 
transported by BCRP rather than P­gp [161] . In an 
pharmacokinetic analysis, brain accumulation of oral 
sorafenib increased in  mice compared with 
wild­type mice, suggesting that its  distribution to the 
brain is primarily restricted by BCRP [161­163] . 

TKIs for VEGFR 

Axitinib (AG013736) is a small­molecule indazole 
derivative and newly developed effective TKI, which 
inhibits vascular endothelial growth factor receptor 
(VEGFR)­1, ­2, and ­3 as well as PDGFR and cKIT. A 
transport study using monolayers of MDCK II cells 
expressing BCRP showed that axitinib is a moderate 
substrate of BCRP [164] . The combination of axitinib and 
SN38 was found to exert a strong synergistic effect on 
antiproliferative and proapoptotic activities in endothelial 
and other cancer cells. This effect could be due to 
increased intracellular accumulation of SN38 by 
axitinib­mediated inhibition of BCRP and ATP7A 
expression, which is the result of extracellular 
signal­regulated kinase (ERK)1/2 deactivation and AKT 
phosphorylation in human pancreatic cancer cell lines [165] . 
However, such a synergistic interaction was not 
observed with SN38 and a similar TKI, pazopanib 
(Votrient), suggesting that an interaction of pazopanib 
with BCRP is unlikely [153] . 

Apatinib (YN968D1), another promising inhibitor of 
receptor tyrosine kinases including VEGFR2, is  currently 
in phase III clinical trials in China to determine its 
efficacy in treating gastric cancer and NSCLC [166] . 
Apatinib  reversed P­gp­ and BCRP­mediated MDR by 
inhibiting their transport function, but not by suppressing 
the AKT or ERK1/2 pathway. Use of these TKIs with 
other conventional chemotherapeutics may provide a 
clinical benefit for patients to circumvent MDR to other 
conventional antitumer drugs. 

Cyclin鄄  dependent kinase (CDK) inhibitors 

Flavopiridol (Alvocidib, HMR1275, also known as 
L86­8275) is a synthetic N­methylpiperidinyl chlorophenyl 
flavone and the first CDK3 inhibitor that is currently in 
clinical trials [167,168] . In one study, flavopiridol induced 
overexpression of ABCG2 but not P­gp or MRP1 in 

MCF­7 cells  [83] . Furthermore, resistance to flavopiridol 
was observed in selected BCRP­overexpressing cell 
lines but not in P­gp­ or MRP1­overexpressing cell lines [83] . 
Flavopiridol was shown as a substrate for wild­type and 
mutant BCRP (482T) in  oocytes injected with 

cRNA [12] . We also found that  mRNA 
expression correlated proportionally with cell viability in 
the presence of 250 nmol/L flavopiridol (  = 0.86,  = 
0.003) and negatively with apoptosis induced by 
flavopiridol in blast cell specimens derived from patients 
with AML, suggesting that BCRP plays a role in 
leukemia cellular resistance to flavopiridol [19] . 

Another conventional CDK inhibitor that was 
described to interact with BCRP is purvalanol A [169] . An 
. [169]  showed that purvalanol A can effectively block the 

SRC signaling and cell cycle progression. These 
investigators studied the effect of a series of CDK 
inhibitors on BCRP­mediated transport by 
photosensitivity assay. Among  compounds tested, 
purvalanol A inhibited BCRP­mediated hematoporphyrin 
most potently with an IC 50  value of 3.5 滋  mol/L. WHP­180 
is also a CDK inhibitor that was shown to  inhibit BCRP 
function, but the rest of the agents tested,  including 
bohemine, seliciclib (roscovitine), and olomoucine, 
showed only minimal effect on  BCRP­mediated 
transport. According to the findings,  planar structure of 
these CDK inhibitors may be an  important factor for 
interactions with the active site of BCRP. 

Interaction of BCRP with new CDK inhibitors  under 
development has been reported. JNJ­7706621 (3,5­ 
diamino­1,2,4­triazole) is an effective inhibitor for both 
CDK and aurora kinases [170] . Selection of human cervical 
carcinoma HeLa cells with JNJ­7706621 caused 
overexpression of BCRP, resulting in MDR in these cells 
(HeLa­6621) [171] . In the same study, the AUC of oral 
JNJ­7706621 was approximately 3­fold higher in 
mice compared with wild­type mice, implying that this 
agent is transported by BCRP. 

Molecular Mechanisms for BCRP Gene 
Expression 

Tran scriptional regulation of BCRP under phy鄄  
siological conditions 

The human BCRP gene is localized to chromosome 
4 (4q22), spans over 66 kb, and consists  of 16 exons 
and 15 introns. The exon­intron organization of BCRP 
gene was originally described by Bailey­Dell  . [172] . 
The translation start site is located in exon 2(Ex2), and 
the translation termination site is located in  Ex16. A 
putative transcription start site (TSS, +1), whose 
nucleotide position was defined as previously described 
(GenBank AF15130.1), was found 529 bp upstream of 
the Ex1 and Ex2 junction and an active proximal 
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promoter region was identified at nucleotides ­300 to ­50 
relative to the TSS in cell lines of human 
choriocarcinoma (JAR, JEG­3, BeWo cells) and breast 
cancer (MCF­7) [172] . In the same study, the promoter 
region was characterized as TATA­less and as having a 
CAAT box and several Sp1 sites downstream from a 
putative CpG island (Figure 2). This is similar to the 
promoters reported for the  (  ) and 
(  ) genes, which lack TATA boxes and have 
multiple Sp1 sites [173,174] . 

To date, several cis­acting elements have been 
reported in the proximal promoter region of BCRP by 
many groups, as summarized in Figure 2. Krishnamurthy 

. [26]  found that  gene transcription is activated 
by binding of the hypoxia­inducible factor 1琢 (HIF1琢  )/ 
ARNT heterodimer to a hypoxia response element 
(HRE) under low oxygen conditions. Because BCRP 
interacts with heme and other porphyrins, its regulation 
by hypoxia suggests that BCRP plays a role in protecting 
cells/tissue from protoporphyrin accumulation  under 
hypoxia. Moreover, hormonal regulation of 
transcription has been reported during pregnancy in 
regard to its protective role for the fetus at the placental 
barrier [175­177] . Indeed, E2­mediated up­regulation of 
mRNA expression was shown in estrogen receptor (ER)­ 
positive breast cancer T47D cells [178]  and primary 

placental trophoblast cells [179] . Ee  . [178]  found that this 
stimulatory effect is mediated through the classical 
pathway that involves binding of E2/ER complexes on 
the estrogen response element in the  promoter 
region. Subsequent studies observed estrogen­mediated 
transcriptional and post­transcriptional down­regulation of 

in BeWo choriocarcinoma cells [177]  and in breast 
cancer cells [180] , respectively. However, Wang  . [175] 

reported that BCRP mRNA and protein expression was 
further increased by progesterone (P4) in combination 
with E2 in BeWo cells, suggesting that E2 and P4 are 
synergistically involved in up­regulation of BCRP 
expression. Although the precise mechanism is under 
investigation, these investigators demonstrated that 
P4­mediated up­regulation of BCRP could be triggered 
by direct binding of progesterone receptor B to a 
progesterone response element identified in the 
promoter [181] . Core sequences of that PRE were 
located at the same position as the ER element core 
sequence [178,181,182] . Therefore,  transcription may be 
regulated by both ERs and PRs in a complex manner. 

Other nuclear receptors are likely involved in 
transcriptional regulation of  . BCRP is found to be 
transcriptionally up­regulated via activation of peroxisome 
proliferator­activated receptor (PPAR) 酌   in human 
myeloid dendritic cells [183] . A 150­bp long,  conserved 
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Figure 2. Identified cis鄄  acting elements are shown in the 
promoter region of BCRP gene with identified splice variants of BCRP mRNA. A putative transcription start site (TSS, +1), defined as previously 
described (GenBank AF15130.1), was found 529 bp upstream of the Ex1 and 2 junction, and 18899 bp upstream of Ex2. An active proximal 
promoter region was identified at nucleotides -300 to -50 relative to the TSS. The same Ex2 acceptor is used for all 5忆鄄  UTR exons (E1U, E1A, 
E1B, E1C, E1E, and E1D). Variable TSSs are found for E1U, E1B, and E1C. Figure is not completely to scale and all nucleotide positions are 
shown relative to the TSS (+1). XRE sites with superscript 野*冶 are also identified as core sequences for DRE. PPAR, peroxisome proliferator鄄  
activated receptor; XRE, xenobiotic response element; DRE, dioxin response element; XBBF, X鄄  box binding factor; ARE, antioxidant response 
element; HRE, hypoxia response element; PRE, progesterone response element; MED, multiple start site element downstream; iMED, inverted MED. 

E1A 
CpG island 

E1U 

E1B 
E1C 

E1D 

E1E 

84



www.cjcsysu.com www.cjcsysu.com www.cjcsysu.com www.cjcsysu.com www.cjcsysu.com www.cjcsysu.com www.cjcsysu.com Chin J Cancer; 2012; Vol. 31 Issue 2 

enhancer region containing three functional PPAR 
response elements was identified upstream of human 

, and binding of the PPAR酌  /retinoid X receptor 
(RXR) heterodimer to this region was confirmed. 
Moreover,  was transcriptionally up­ regulated by 

琢  ­specific agonists (e.g. Wy14643 or GW7674) in the 
intestines and liver of wild­type mice but not in PPAR琢  ­ 
null mice. Hence,  transcription has been suggested 
to be regulated in a PPAR琢  ­dependent manner [184] . 

Previously, aryl hydrocarbon receptor (AHR) 
agonists, such as polycyclic aromatics (e.g. BP, indolo 
[3,2­b]carbazole and benzo [k]fluoranthene) and phytoche鄄  
micals (e.g. quercetin, chrysin, and flavone), were shown to 
induce BCRP expression in Caco­2 cells, indicating an 
involvement of AHR in  transcription [25,185] . 
mRNA expression was recently found to be enhanced by 
binding of the AHR/ARNT heterodimer in proximal and 
distal regions upstream of the  TSS that contain 
AHR elements [AHREs, also known as xenobiotic 
response elements (XREs)] [186,187] . 

Nrf2, a nuclear factor­erythroid 2­related transcription 
factor, plays a critical role in transcriptional up­regulation 
of many metabolizing enzymes and transporters that 
rescue cells from oxidative stress and/or electrophilic 
stress mediated by extracellular stimuli such as 
xenobiotics [188] . Nrf2 was found to  function as a 
transcription factor for  gene  expression in 
hepatocytes: silencing  gene expression abolished 
induction of  mRNA  expression mediated by the 
Nrf2 inducer, tert­butylhydroquinone [189] . Detailed promoter 
analysis  using luciferase reporter assays revealed an 
antioxidant  response element (ARE) critical for the 
Nrf2­mediated  expression in lung cancer cells [190] . These 
findings provide a rationale for up­regulation of functional 
BCRP by xenobiotics. 

Furthermore, growth factors are also likely involved 
in  gene transcription. Epidermal growth factor 
(EGF)­mediated activation of  mRNA expression 
has been observed in ovarian [191]  and  breast [175]  cancer 
cell lines. In breast cancer cells, this effect could involve 
ERK1/2 and c­jun N­terminal kinase, suggesting that 

mRNA expression may be under control of the 
MEK­ERK signaling pathway [175] . This notion is supported 
by the evidence that activation of  EGF receptors (e.g. 
EGFR and HER2) increased the side population (SP) 
fraction in head and neck  squamous cell carcinoma [192] 
and breast cancer cells [53] . However, the downstream 
transcription factors and  ­acting effectors have not 
been identified for  EGF­mediated signaling pathways. 
Further studies are  warranted to understand the 
mechanism underlying BCRP up­regulation by growth 
factors. 

Alternative promoter utilization of BCRP 

In general, alternative splice variants of 5忆  ­ 

untranslated leader exons are associated with alternative 
promoter usage. Such usage can result in  diversity of 
gene expression in a variety of ways, including tissue­ or 
cell type­specific gene expression  and changes in the 
efficiency with which the mRNA with  different leader 
exons is translated. We discovered at least three 5忆  ­UTR 
splice variants of Ex1 (designated as  E1A, E1B, and 
E1C) that are alternatively spliced to the  common Ex2, 
compliant with the GT­AG rule. E1A, E1B, and E1C start 
at nucleotides ­393, +244, and +344 and  end at 
nucleotides ­291, +338, and +529, respectively  (Figure 
2) [77] . These alternative splice variants are expressed in a 
tissue­specific manner among human  normal tissues, 
suggesting transcriptional regulation by tissue­specific 
alternative promoter usage. In addition to  the splice 
variants, our GenBank search predicted two more mRNA 
variants: one with an Ex1 located approximately 73 kb 
upstream from the TSS (designated E1U) and one that 
lacks Ex1 (that starts from Ex2, designated as E1­). This 
was further confirmed by  Poonkuzhali  .  [193] , who 
performed an extensive review of the expressed 
sequence tag (EST) database and genome assembly 
using Aceview (http://ncbi.nih.gov/IEB/Research/ 
Acembly) and the University of California Santa Cruz 
genome browser (http://genome.ucsc.edu/). At least 
three different alternative first exons were found for 
BCRP: Ex1a (corresponding to E1C [77] ), Ex1b (E1A), and 
Ex1c (E1U)  [193] . Interestingly, liver samples that 
generated a  transcript using Ex1b had significantly 
lower  mRNA levels. Zong  . [194]  reported three 
isoforms of mouse  mRNA that differ in their 5忆  ­ 
UTR (also denoted as E1a, E1b, and E1c) like human 

. Importantly, they found that the  expression of 
mouse  during hematopoiesis is  transcriptionally 
regulated by alternative use of multiple leader exons and 
promoters in a developmental  stage­specific manner, 
indicating a promising mechanism for the lineage­specific 
expression of BCRP in hematopoiesis in both humans 
and mice. 

To date, a set of  ­ and  ­acting control 
elements distinct for each alternative promoter has not 
yet been identified in humans or mice. Such information 
may help to explain how BCRP is expressed in a 
tissue­specific manner. Nevertheless, some light has 
been shed on this subject recently. Natarajan  . [195] 

found that  E1b mRNA spice variant expression, 
which is predominant in mouse intestine, is regulated by 
binding of phosphorylated cAMP­response element 
binding protein (p­CREB) to its  site on the mouse 
E1b promoter region. Possibly, p­CREB may be involved 
in transcriptional regulation of the human  mRNA 
variant expressed in the small intestine, E1C. This is 
currently under investigation in our laboratory. 

alternative promoter usage was recently 
studied in bone marrow samples derived from pediatric 

Takeo Nakanishi et al. Role of BCRP in MDR 

85



Chinese Journal of Cancer Chinese Journal of Cancer Chinese Journal of Cancer Chinese Journal of Cancer Chinese Journal of Cancer Chinese Journal of Cancer Chinese Journal of Cancer Chin J Cancer; 2012; Vol. 31 Issue 2 

patients with M7 AM L by Campbell  .  [196] . They 
identified, similar to our prediction from a GenBank 
search, the leader exon E1U to be located approximately 
73 kb upstream from TSS and reported small exons 
(designated E1U2 ­E1U5) between E1U and E1A (Figure 
2). They also found two other Ex1s (designated E1D and 
E1E) located between E1C and Ex2 and reported that 
these Ex1s were expressed less frequently in bone 
marrow samples. Although the function of the extensive 
variability in the  5 忆  ­UTR is not yet fully 
understood, further investigations may clarify the role of 
alternative promoters in the tissue­ and cell type­specific 
regulation of BCRP expression. 

Post鄄  translational regulation of BCRP function 

Post­translational modifications (PTMs) of BCRP, 
including N­glycosylation and phosphorylation, have been 
reported in normal and cancer cells. The first described 
BCRP PTM was N­glycosylation of asparagine 596 [197] . 
Although this modification did not affect BCRP function, 
it may be involved in expression of functional BCRP. 
N­glycosylation status was shown to be important for 
apical sorting in polarized cells such as hepatocytes [198] . 
We found that the proteasome is involved, at least in 
part , in the post­translational down­regulation of 
BCRP [128] . Nakagawa  .  [199,200]  showed that N­glyco鄄  

Figure 3. 

A, in drug鄄  sensitive cells, BCRP 
transcription is regulated by histone 3 
trimethylated at lysine 9 (H3K9me3) 
and the proximal promoter region is 
reported to be methylated in cells prior 
to drug selection or treatment. 
Synthesized mRNA is negatively 
regulated by possible candidate miRs, 
including miR鄄  519c, miR鄄  328, and 
miR鄄  520h, which are purported to bind 
miR response elements in 3忆 鄄  UTR of 
BCRP mRNA. Thus, BCRP expression 
is transcriptionally and post鄄  
transcriptionally regulated. B, in drug鄄  
resistant cells, several possible 
mechanisms are hypothesized based 
on current evidence. BCRP gene 
amplification is observed in some 
drug鄄  selected cancer cells. 
Transcription factors become more 
accessible because of histone 3 
modulations, including acetylation at 
lysine 9 and 14 (H3K9ac, H3K14ac), 
methylation at lysine 4 (H3K4me), and 
phosphorylation at serine 10 
(H3S10p). Multiple TSSs are likely 
used for induction of BCRP. 
Demethylation of CpG islands around 
promoter regions may contribute to 
overexpression of BCRP in response to 
drugs. Once BCRP mRNA is 
synthesized, its 3忆 鄄  UTR becomes 
truncated, resulting in deletion of miR 
response elements, which in turn 
increases BCRP mRNA stability and 
levels. M: methylation; A: acetylation; 
P: phosphorylation. 
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sylation status  may be important for BCRP post­ 
translational  down­regulation induced by ubiquitin­ 
mediated,  ER­associated degradation during the 
trafficking process. Once BCRP is shuttled to the plasma 
membrane, it is known to be degraded by the 
endosome­lysosome pathway after remaining in the 
plasma membrane domain for a certain period  [201,202] . 
Translocation of BCRP is also regulated by PTMs. Xie 
.  [104]  found that BCRP is phosphorylated by the 

serine/threonine kinase Pim­1 (Pim­1L, 44kDa) at 
threonine 362, which is essential for its translocation to 
the plasma membrane, in human prostate cancer 
LNCaP cells. LNCaP cells transfected with  cDNA 
became resistant to docetaxel, which was thought not to 
be substrate for BCRP. These findings suggest that 
phosphorylation at T362 is critical for translocation and 
substrate specificity of BCRP. Furthermore, disrupting 
the Pim­1 signaling to reverse BCRP­mediated MDR 
may be a potential therapeutic approach [104] . 

Post­translational regulation of BCRP has been 
extensively studied in relation to the PI3K/AKT signaling 
axis in a variety of cells. The first report showed that 
impaired PI3K/AKT signaling (in  mice) caused loss 
of the SP fraction in the bone marrow, as well as 
localization of BCRP in the endoplasmic reticulum and 
absence of BCRP in the active plasma membrane 
location  [203] . To date, similar observations have been 
made in tumors including glioma [204]  and HCC [205] . The 
PI3K/AKT signaling pathway may be involved in 
previously reported E2­induced post­transcriptional 
down­regulation in breast and choriocarcinoma cell 
lines  [177, 180] . Although the precise mechanism remains 
unclear, Hartz  .  [206]  showed that BCRP transport 
function was promptly reduced in isolated brain 
capillaries treated with E2. This was further explained by 
internalization of BCRP protein after short­term exposure 
to E2  [207] . Under long­term exposure conditions, E2 
signals through ERβ  to activate the PTEN/PI3K/AKT/ 
GSK axis, resulting in BCRP degradation through a 
process in which ubiquitination and proteasomal 
proteolysis may be involved. 

In neurospheres produced from gliomas, loss of 
PTEN increased the SP fraction, and this increase was 
abolished with a PI3K inhibitor, LY294002. These results 
suggest that the PTEN/PI3K/AKT pathway is critical for 
BCRP function [204,208] . In BCR­ABL­dependent CML cells, 
we noted that inhibition of BCR­ABL by imatinib blocks 
the PI3K/AKT pathway, leading to post­transcriptional 
down­regulation of BCRP surface expression, which 
could attenuate the BCRP­mediated resistance to TKIs 
and confound experiments characterizing the interaction 
of TKIs with BCRP [128] . Similar observations were made 
with nilotinib and dasatinib in BCR­ABL­dependent model 
systems showing a concomitant down­regulation of 
phosphorylated Crkl, which undergoes phosphorylation 
by BCR­ABL as a substrate  [129] . However, similar 

post­transcriptional down­regulation was also observed 
following imatinib treatment in head and neck squamous 
cell carcinoma in which BCR­ABL is not expressed [209] . 
This effect may be mediated by blocking tyrosine 
kinases other than BCR­ABL, such as c­KIT or SRC; 
hence, the precise mechanism needs to be addressed 
further. 

Folate deprivation was found to induce BCRP 
expression associated with mitoxantrone resistance in 
Caco­2 cells. Interestingly, BCRP expression was 
associated with a cytoplasmic compartment in these 
cells, possibly resulting in intracellular drug sequestration 
as a mechanism of resistance, rather than the classical 
mechanism of efflux of drugs from cells [210] . 

Regulation of BCRP expression in side 
population and other stem cells 

Since the first report of a distinct SP in 
neuroblastoma cells [50] , SP cells have been reported in 
various human cancer cell lines, including gastroin鄄  
testinal [51] ,  lung [52] , breast [53,54] , hepatic [55] , esophageal [56] , and 
pancreatic [57] cancer cell lines. SP cells have been shown 
to be highly tumorigenic in immunodeficient mice and to 
possess a potent ability for colony formation and 
proliferation. Accordingly, SP cells are enriched for 
cancer stem cells (CSCs). The low Hoechst dye 
accumulation that is characteristic of the SP fraction is 
mainly mediated by  expression of functional BCRP [40,53] ; 
therefore, SP cells have been thought to be highly 
resistant to conventional chemotherapeutic agents. 
Modulation of BCRP function in the CSC population may 
provide a promising way to overcome MDR by efficiently 
eradicating CSCs. To date, molecular mechanisms 
underlying BCRP expression in  CSCs are not fully 
understood. Krishnamurthy  . [26]  showed that, under 
hypoxia, progenitor cells from  mice had reduced 
ability to form colonies as compared  with those from 

mice. Inhibiting heme biosynthesis rescued 
progenitor cells. Thus, BCRP has been 

postulated to play a critical role in  protecting 
progenitors/stem cells from intracellular  accumulation of 
heme­related molecules (e.g. porphyrin)  to enable cell 
survival under conditions of hypoxia. In this regard, 
BCRP transcription may be regulated in stem cells via 
binding of the HIF1/ARNT heterodimer to the HRE in the 
promoter region of  upon hypoxic demand. 

The PI3K/AKT pathway may be essential for 
expression of functional BCRP in stem cells. Recently, 
we found that HER2 expression was significantly 
correlated with the presence of an SP in luminal types of 
breast cancer cell lines and primary cells from breast 
cancer patients [53] . The occurrence of SP and 
tumorigenicity of SP cells decreased when cells were 
treated with HER2 signaling inhibitor AG825 or 
trastuzumab, which reduced phosphorylation of HER3 
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and AKT. These results suggest that PI3K/AKT signaling 
triggered by HER2/HER3 heterodimers contributes to 
expression of functional BCRP in SP cells. Accordingly, 
HER2­induced enhancement of SP cells may be a new 
rationale for the aggressive phenotype of HER2 +  breast 
tumors. How BCRP functionality is augmented by the 
HER2 signaling is poorly understood, and further study is 
warranted to clarify this molecular mechanism. 

The pluripotent  gene may play a role in 
maintenance of cancer stem cell­like properties [211] . Oct4 
induces transcription of T­cell leukemia/lymphoma 1A 
(TCL1A), resulting in activation of AKT in embryonic 
stem cells [212] . Wang  . [213]  found that  overexpression 
of Oct4 resulted in induction of BCRP expression in 
chemoresistant HCC cell lines and tumor samples from 
patients with HCC, suggesting that BCRP is under 
control of the Oct4/TCL1/AKT signaling pathway in 
HCCs. Because the AKT signaling may modulate BCRP 
function through regulating its intracellular localization [203,208] 

and post­transcriptionally  down­regulating BCRP 
expression in BCR­ABL +  CML cells [128] , these findings 
suggest there is likely a link  between upstream effectors 
of AKT and BCRP in stem  cell populations. However, 
how the AKT  signaling regulates BCRP function through 
translocation, up­regulation of BCRP expression, or other 
mechanisms still remains unknown. 

Sal­like protein 4 (SALL4), a zinc finger transcription 
factor essential for histogenesis, was recently shown to 
activate BCRP expression indirectly, suggesting that 
SALL4 regulates the function of BCRP in SP cells [214] . 
The homeobox gene  is an inducer of 
epithelial­mesenchymal transition.  promoter 
analysis suggests that MSX2 requires the SP1­binding 
site in the  promoter region so that MX2 and SP1 
may cooperatively regulate  transcription in 
pancreatic cancer stem cells [215] .  expression  can 
be transcriptionally silenced by TGF­茁  through  direct 
binding of its downstream targets, Smad2/3, to the 

promoter/enhancer, resulting in a decrease in the 
number of SP cells. This observation suggests a role for 
TGF­茁   in negative regulation to maintain the 
cancer­initiating cells within gastric cancer [216] . In  addition 
to such complex transcriptional regulation, post­ 
transcriptional regulation of  mediated by 
microRNAs (miRs) has been reported in some cancer 
cells. In the stem­like (BCRP + ) cell population 
fractionated from RB143 human retinoblastoma cells, 

,  , and  levels are found to 
be lowered 9­, 15­, and 3­fold, respectively, suggesting 
that the high level of BCRP expression is regulated by 
these miRs  [217] . Other mechanisms may relate to the 
methylation status of the CpG island region of the 
promoter. In human prostate cancer, BCRP is reportedly 
up­regulated in response to the DNA­ demethylating 
reagent 5­aza­dC in cancer­initiating cells marked by 

CD117 + /BCRP + , suggesting that  transcription is 
negatively regulated by hypermethylation of CpG sites in 
the promoter  [218] . 

Putative Mechanisms for Over鄄  
expression of BCRP in Response to 
Drug Treatments 

Previously reported mechanisms for differential 
expression of BCRP in cells selected with 
chemotherapeutic agents compared to parental, 
drug­sensitive cells include gene amplification, histone 
modification, and miR­mediated regulation. Recent 
progresses are illustrated in Figure 3. 

Gene amplification 

Comparative genomic hybridization and cDNA 
hybridization studies demonstrated a high level of 
amplification in cancer cell lines treated with 
mitoxantrone (MCF­7/MX) and, to a less extent, with 
doxorubicin in the presence of verapamil 
(MCF­7/AdrVp3000) [219] . These cell lines, produced by 
high selective pressure, highly overexpress BCRP. 
However, no amplification was observed in another 
cancer cell line selected with mitoxantrone (S1M1 80) [219] . 
This result was further confirmed by Volk  . [88] , who 
showed that not all cancer cell lines selected with 
mitoxantrone had  gene amplification. We 
examined amplification of  in MDR cancer cells, 
MCF­7 breast cancer cell sublines (MCF/MX and 
MCF/AdrVp), and human ovarian cancer IGROV1 
sublines (IGROV1/MX and IGROV1/T8) by quantitative 
PCR.  gene copy number was 15­fold greater in 
MCF­7/MX (selected with mitoxantrone) than in parental 
cells or MCF­7/AdrVp cells (selected with doxorubicin 
with verapamil) [77] . No  amplification occurred in 
IGROV1/MX3 (selected with mitoxantrone) or 
IGROV1/T8 (selected with topotecan) cells relative to 
their respective parental cells. These findings suggest 
that gene amplification may be induced in response to 
drugs; however, gene amplification does not necessarily 
occur in all drug­selected MDR cancer cells. The reason 
for this differential effect is poorly understood. 

Multiple transcription start sites (TSSs) and 
alternative promoter usage 

In MCF­7 and IGROV1 cells, each splice variant 
(E1A, E1B, or E1C) generally has a distinct major TSS, 
whereas the TSS for these Ex1 variants in drug­resistant 
MCF­7/AdrVp and IGROV1/T8 cells are more 
heterogeneous. This is particularly true for the E1C 
variant, such that no single TSS can be assigned for a 
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given exonal variant [77] . Moreover, our study showed that 
the proportion of E1C  transcripts increased to up 
to 47% of the total  mRNA transcripts in 
MCF­7/AdrVp cells, whereas this transcript variant was 
only 23% of the  transcripts in parental MCF­7 
cells. In contrast, proportion of the E1A transcripts to 
total transcripts was much less (approximately 6% ) than 
that of E1C in MCF­7/AdrVp cells; however, the E1A 
transcript was predominant over E1C in MCF­7 cells. 
Similar observations were made in sublines of 
drug­selected IGROV1 cells, implying that alternative 
promoters using different TSSs are used to induce 

transcription. Heterogeneity of the TSS for Ex1 
observed in drug­resistant MCF­7/AdrVp cells reflects the 
previous report by Ince  . [220]  that multiple TSSs in 

were often observed in actinomycin D­selected 
sublines of Chinese hamster lung DC­3F cells, which 
overexpress  mRNA without a concomitant increase 
in  gene amplification. The same investigators later 
described that this multiple TSSs could be associated 
with the response element, termed as MED­1 (multiple 
start site element downstream), in the  promoter 
region for RNA polymerase II, which can initiate 
transcription at distinctive sites. In human  gene, 
response element termed inverted MED  (iMED) was 
indicated to act as a  ­activator for the  gene [221,222] . 
Indeed, MED­1 and iMED elements are  located in the 

promoter region as we reported [77]  (Figure 2). 
Further study of the role that these response  elements 
play in  expression is reasonable to  identifying 

­acting factors for each promoter region. 

Demethylation 

Methylation of the 5忆  ­carbon of cytosine in the CpG 
island of a gene promoter is a well­known epigenetic 
modification that silences gene expression. Methylation 
has been reported in the CpG island within the proximal 

promoter region in RCC cell lines such as UOK121 
and UOK143. Furthermore,  expression was up­ 
regulated when these cells were treated with the DNA­ 
demethylating agent, 5­aza­2忆  ­deoxycitidine (5­aza­dC) [223] . 
Other investigators  found that DNA demethylation is a 
molecular mechanism  by which  is overexpressed 
in response to drug exposure. Turner  . [224]  found that 

transcription is up­regulated because of 
demethylation of  the CpG island in the promoter in 
human multiple  myeloma 8226 cells selected with 
mitoxantrone (8226/MR).  promoter methylation 
appeared to be  present not only in CCRF­CEM and 
Jurkat leukemia cells and primary T­ALL lymphoblasts 
obtained from ALL patients, but also in IGROV1 ovarian 
carcinoma cells [225] . In solid tumors, we examined the 
methylation status of the  promoter in 
drug­resistant MCF­7/AdrVp breast cancer cells and 

IGROV1/MX3 and IGROV1/T8 ovarian cancer cells and 
found no  demethylation compared to parental cells [77] . 
However, Bram  .  [225]  described prominent 
promoter demethylation in IGROV1/MX3 and IGROV1/T8 
cells compared with their parental IGROV1 cells. 
Because no  gene amplification was found in 
these cells, demethylation of the promoter region could 
be the cause for  up­regulation in response to 
drugs. 

Histone modifications 

Recently, it has become increasingly evident that 
histone modulation affects BCRP expression in response 
to drug exposure. Histone deacetylase inhibitors 
(HDACi), including vorinostat and romidepsin, are in 
clinical use [226] . Indeed, BCRP activation has been 
observed in malignant peripheral blood mononuclear 
cells and S1 colorectal cancer cells treated with 
romidepsin, which increases acetylated histone H3 [227] . 
Another HDACi phenylbutyrate [228]  induced BCRP 
expression in S1 and KG­1a leukemia cells. Histone 
hyperacetylation resulting from a single­step selection 
with anticancer agents (e.g. doxorubicin) was associated 
with overexpression of BCRP in cancer cell lines MCF­7, 
IGROV1, and S1 [229] .  Furthermore, Hauswald  . [230] 

demonstrated that BCRP  and P­gp could be induced in 
mononuclear leukemic cells derived from a  patient with 
relapsed AML when  treated with HDACi (e.g. 
phenylbutyrate), with histone being hyperacetylated in 
the promoter region of  . These findings show that 
exposure of cancer cells to HDACi induces a drug 
resistance phenotype that  might negatively affect 
treatment effectiveness. To  .  [226]  hypothesized an 
association of the  promoter with  histone H3 
trimethylated at Lys 9 (H3K9me3) keeps BCRP 
expression low in drug­sensitive cells. According  to the 
hypothetical model, once the cells are treated with drugs, 
H3 modifications, including acetylation at Lys 9 and 14 
(H3K9ac, H3K14ac), trimethylation at Lys 4  (H3K4me3), 
and phosphorylation at Ser 10 (H3S10ph), induce 
recruitment of a chromatin remodeling factor  (Brg­1) and 
RNA polymerase IIs, resulting in withdrawal of class I 
HDACs from the  promoter. This modification 
functions as a switch to open the chromatin configuration 
to enhance  transcription. Thus, H3 modulation 
seems to be a relevant rationale for manipulating BCRP 
expression; however, this needs to  be examined further 
because HDACi such as romidepsin has not induced 

mRNA expression in all cell lines studied so 
far [226] . 

Regulation of BCRP gene expression by 
microRNA (miR) 

To date, several miR response elements that might 
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target  mRNA 3忆  ­UTR have been identified using 
multiple algorithms [231,232] . Among them,  may be 
involved in BCRP overexpression in drug­resistant 
cancer cells. To  . [232]  found that  mRNA with a 
truncated 3忆  ­UTR is expressed in drug­resistant S1M1 
80 cells but not in their parental S1 cells. Because the 
shorter 3忆  ­UTR lacked the miR response element target 
site (s) for  ,  mRNA became stabilized, 
resulting in BCRP overexpression in the drug­resistant 
cells. Shortening of the  mRNA 3忆  ­UTR has been 
reported in various  BCRP­overexpressing resistant cell 
lines, including  MCF­7/FLV1000, SF295/MX2000, 
H460/MX20, and A549/Beca250 [233] . Thus, instability of 
BCRP mRNA 3忆  ­UTR in response to drugs may be one 
of the mechanisms for induction of BCRP expression in 
selected cancer cells.  is also involved in 
post­transcriptional regulation of  because 
negatively regulates both mRNA and protein expression 
of BCRP and is underexpressed in MDR cancer cells 
such as MCF­7/MX100 cells [231] . Another miR postulated 
to affect BCRP expression is  . Although BCRP 
expression was unchanged in MCF­7/MX100 cells with 
forced expression of  [217] ,  is likely 
involved in BCRP expression  during differentiation of 
hematopoietic stem cells.  is enriched in 
hematopoietic stem cells but underexpressed in CD34 + 
cells, thereby maintaining BCRP expression in the stem 
cell population [234] . This was also noted in pancreatic 
cancer PANC­2 cells  because introduction of 
resulted in cell migration and invasion as well as 
reduction of the side population [235] . 

BCRP Polymorphisms and Cancer Treat鄄  
ment Outcomes 

Many single nucleotide polymorphisms (SNPs) 
have been observed in the  gene [236] . Honjo  . [18] 
first  described 7 SNPs in the intron sequences, 3 
non­coding SNPs in the UTR, 2 synonymous SNPs, and 
3 non­synonymous SNPs [c.34G>A (V12M, Ex2; 
rs2231137), c.421C>A (Q141K, Ex5; rs2231142), and c. 
1858G>A (D620N, Ex16; rs34783571)]. Transport 
activity of BCRP variant proteins V12M and Q141K have 
been studied the most frequently and have been found 
to decrease BCRP function significantly when transfected 
into cultured cells [237­239] . Reduction of the activity of  the 
V12M variant resulted from its decreased expression  at 
the apical membranes [238] . Tamura  . [240,241]  reanalyzed 
the transport activity of BCRP protein when 7  known 
BCRP variants due to SNPs, including V12M,  Q141K, 
F208S (c.623T>C, Ex6; rs1061018), and S248P  (c. 
742T>C, Ex7; rs3116448), were expressed in Flp­In­293 
cells. The results indicated that relative to  wild­type 
BCRP­expressing cells, the IC 50  value of SN38 against 
Q141K­expressing Flp­In­293 cells was  reduced 

approximately 50%, but it was not reduced in V12M­ 
expressing cells. Int erestingly, the IC 50  values of SN38, 
mitoxantrone, doxorubicin, daunorubicin, and etoposide 
for Flp­In­293 cells expressing other variants were 
significantly lower than those for cells expressing 
wild­type BCRP. Notably, F208S and S441N were not 
expressed in the cells, suggesting that the rest of the 
variants (S248P, F431L, and F489L) may also impart 
impaired function of BCRP  [241] . Another study showed 
that the P269S (c.805C>T, Ex7; rs34678167) and 
Q126Stop (c.376C>T, Ex4; rs72552713) alleles were 
found among Korean subjects, and that the transport 
activity of the P296S variant decreased based on 
methotrexate uptake by vesicles expressing this variant [242] . 
Not all  SNPs are associated with diminished 
transporter activity, however. The I206L (c.616A>C, Ex6; 
rs12721643) variant was found to have high transporter 
activity but low protein expression when transfected into 
HEK cells, whereas the N590Y (c.1768A>T, Ex15; 
rs34264773) and D620N had higher expression but lower 
activity [243] . 

The effects of promoter and non­coding region 
SNPs on BCRP expression in the liver, intestines and 
lymphoblasts were recently investigated by Poonkuzhali 

. [193] . Forty­one SNPs were found in the promoter 
region and 49 in the introns. Promoter and intron 1 
alleles were found to be associated with altered 
mRNA expression. Furthermore, a decrease in BCRP 
expression may be caused by ­30477C>G (rs2127861), 
­15622C>T (in upstream region), and 1143G>A (in intron 
1; rs2622604), and an increase in BCRP expression 
may be caused by ­15994C>T (rs7699188), ­15846A>C 
(in upstream region), and 12283T>C and 16702C>T (in 
intron 1; rs2046134). Interestingly, these investigators 
showed that individuals with the ­15994C>T 
polymorphism had significantly higher clearance of oral 
imatinib. 

Previous pharmacokinetic studies have shown that 
people with  polymorphisms can experience 
significant alterations in the absorption, distribution, 
metabolism, or elimination of BCRP substrate drugs. 
The oral bioavailability of topotecan increased 
significantly in patients heterozygous for the c.421C>A 
allele  [244] . Another work showed that cancer patients 
heterozygous for the c.421C>A (Q141K) allele had 
approximately 3­fold higher plasma levels of intravenous 
diflomotecan (a 10,11­difluoro­homocamptothecin), a 
new promising topoisomerase I inhibitor with enhanced 
plasma stability and superior preclinical anti­tumor 
activity, than those harboring the wild­type allele, 
implying that diflomotecan can be transported by BCRP [245] . 
The heterozygous c.421C>A allele also did not appear to 
affect the pharmacokinetics of irinotecan or its metabolite 
SN38 [246]  despite that BCRP transports SN38 and its 
glucuronide  [90,94] . Similarly, the c.34G>A or c.421C>A 
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polymorphisms of  were not associated with 
alterations in the pharmacokinetics of irinotecan, SN38, 
or SN38 glucuronide, nor were they associated with the 
tumor response rate or toxicity in Korean patients with 
advanced NSCLC treated with irinotecan [247] . Recent 
progress in research of both functional SNPs and BCRP 
inhibitory agents that modulate the 
pharmacokinetics and pharmacodynamics of BCRP 
substrate drugs are reviewed elsewhere [248] . 

In a study of 200 Japanese patients with 
non­papillary RCC and age­ and sex­matched controls, 
Korenaga  . [249]  investigated the c.421C>A (Q141K) 
allele and found that individuals with the  wild­type C/C 
genotype had a higher risk for developing  non­papillary 
RCC . These authors concluded that  may be a 
candidate RCC susceptibility gene. Increased 
susceptibility and shorter survival of patients with diffuse 
large B­cell lymphoma was observed in subjects with the 
c.34G>A or c.421C>A alleles [250] . A recent study by Hahn 

. [251]  showed that patients with the c.421C>A (C/A) 
allele and hormone­refractory prostate cancer had 
significantly longer survival beyond 15 months compared 
to those with the wild­type (C/C) genotype when treated 
with docetaxel­based combination  chemotherapy . 
Similarly, M俟  ller  . [252]  found shorter overall survival 
after treatment with platinum­based regimens in a large 
series of patients with small cell lung cancer and NSCLC 
who carried the 421A allele of  . Because 
platinum­based drugs are not identified as substrates for 
BCRP, the precise reason for this phenotype is not 
clear. Further study is needed to address this issue. 

Conclusions 
BCRP plays a significant role in pharmacokinetics 

and contributes to MDR in cancer. Therefore, to 

overcome MDR, it is important to understand how this 
transporter exerts its function and how its expression is 
regulated, as this information may provide clues for 
developing compounds that modulate BCRP activity. As 
we reviewed here, many mechanisms are involved in 
BCRP expression, suggesting that a complex overall 
mechanism underlies expression  among a variety of 
tissues. BCRP function is likely regulated by the 
PI3K/AKT signaling pathway in a transcriptional and 
post­translational manner; however, the precise 
molecular mechanism used by this signaling cascade 
has not yet been determined. Because this signaling 
pathway is also critical for cancer cell survival and 
proliferation, further investigations may clarify common 
molecular targets that modulate BCRP expression and 
activity as well as cell proliferation and growth. Cancer 
stem cells have been recently the subject of increased 
scrutiny, and BCRP expression in such cell populations 
is garnering attention because of its potential to confer 
drug resistance. Current evidence does not explain 
sufficiently how BCRP is regulated in undifferentiated 
cells. Therefore, it is worthwhile to address this issue in 
terms of circumventing transporter­mediated MDR 
acquired by cancer cells by modulating activity of MDR 
transporters such as BCRP to sensitize cancer stem 
cells to conventional cancer chemotherapeutic agents 
and to efficiently eradicate them from tumor mass, 
thereby providing a clinical benefit for patients. 
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U.S. Chinese Anti鄄  Cancer Association (USCACA 美中抗癌协会)鄄  
National Foundation for Cancer Research鄄  USA 

(NFCR鄄  USA, 国家癌症基金鄄  美国) 
2012 Scholar Award 

The USCACA and NFCR are pleased to invite nominations for 
2012 USCACA­NFCR Scholar Awards 

The Awards will recognize four Chinese investigators on the basis of significant contributions in Basic and 
Translational Cancer Research 
The Awards will be presented in a ceremony during the Chinese Anti­Cancer Association biannual meeting to be held 
in Beijing, China, September 7­9, 2012. 
Candidacy is open to all junior Chinese researchers who were trained in US and subsequently returned to China during 
the last two years, and are currently active in cancer research in China. Selection of the award winners will be made on 
the basis of the candidate爷s meritorious achievements in cancer research both during training in US and after returning 
to China. The winners will receive an Award Recognition Plaque and an honorarium of $1,000 US dollars. 
Nominations may be made by a scientist and must be submitted via e­mail attachments to Dr. Shi­Yuan Cheng , the 
Chair of Scholarship Selection Committee of USCACA at chengs@upmc.edu no later than 12:00 p.m. US Eastern 
Time on March 31, 2012 
The following materials must be submitted: 
1. Nomination Letter: concisely describe the candidate爷s achievements for which he or she is being nominated; and 
not exceed one page; 
2. Candidate爷s curriculum vitae, including a complete list of his or her publications; 
3. Outline of the candidate爷s future research plan: not exceed one page; 
4. Supporting letters: one from the US mentor and one from current director/chair/dean in China. 
The deadline for nomination is March 31, 2012 
A shared goal of USCACA and NFCR is to expedite novel cancer drug development by stimulating the translation of 
laboratory discoveries into novel cancer treatments, fostering collaborations in clinical cancer drug development, and 
sharing best practices and knowledge between China and the United States. 
To learn more and to join USCACA, please visit: http://www.uscaca.org 
To learn more about NFCR, please visit: http://www.nfcr.org 
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