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Ferroptosis, a novel mode of non-apoptotic cell death, 
involves a metabolic dysfunction that results in the pro-
duction of iron-dependent reactive oxygen species (ROS), 
an iron carrier protein (transferrin), intracellular meta-
bolic process, and related regulators (e.g., p53 protein). 
Previous studies have linked ferroptosis with oncogenic 
Ras [1], and p53 tumor suppressor positively regulates 
ferroptosis by transcriptionally inhibiting the expression 
of the cysteine/glutamate antiporter, which is encoded by 
the SLC7A11 gene in human [1, 2]. Whether other fac-
tors such as epigenetic factors are involved in the process 
remains less known.

Chromatin modifier lymphoid specific helicase (LSH) 
contributes to the malignant progression of nasopharyn-
geal carcinoma and glioma [3]. We recently indicated 
that LSH was shown to co-operate with partners, such 
as G9a, to drive cancer progression [4, 5]. However, the 
molecular mechanisms, particularly in lung cancer, are 
not well understood. Importantly, the impact of ferropto-
sis in cancer progression especially in chromatin remod-
eling is still far from fully understood. Based on the study 
reported in the article entitled “EGLN1/c-Myc induced 
lymphoid-specific helicase inhibits ferroptosis through 
lipid metabolic gene expression changes,” which was 
recently published in Theranostics by Jiang et al. [6], such 
an interplay between epigenetic controls in chromatin 
remodeling and ferroptosis has been addressed.

Using RNA sequencing and the gene ontology analy-
sis, we first identified a significant enrichment in path-
ways that related to metabolic process and the Warburg 
effect [6]. Moreover, the link between LSH and meta-
bolic genes prompted us to assess the expression of two 
groups of metabolic genes. The first group comprised 
glucose transporters (GLUTs), which were important in 
glucose transport, and the other group comprised fatty 
acid desaturases (FADSs), which were dependent on 
reduced nicotinamide adenine dinucleotide phosphate 
(NAPDH). We demonstrated that LSH contributes to 
lung cancer progression by directly up-regulating meta-
bolic genes including stearoyl-CoA desaturase 1 (SCD1) 
and FADS2. LSH-mediated increases in metabolic gene 
expression may occur through a DNA methylation-
independent mechanism rather than through chroma-
tin regulation [4, 7]. Furthermore, our findings provided 
evidence for an interaction between LSH and WD repeat 
domain 76 (WDR76), which is a nuclear protein contain-
ing tandem copies of WD repeats (also known as WD40 
or β-transducin repeats) that has unknown function in 
mammals. The LSH-dependent recruitment of WDR76 
to the metabolic gene promoters and the subsequent 
chromatin modification that leads to metabolic gene acti-
vation links epigenetic regulation by LSH to up-regula-
tion of the emerging metabolic genes.

The ferroptotic mode of programmed necrosis was 
recently discovered as an apoptosis-independent form 
of cell death in Ras-transformed cells; the K-ras mutant 
is common in lung cancer [8]. Ferroptotic death is mor-
phologically, biochemically, and genetically distinct 
from apoptosis, necrosis (various forms), and autophagy. 
This process is characterized by an overwhelming, iron-
dependent accumulation of lethal lipid ROS [1, 2]. We 
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next demonstrated that LSH decreases the lipid ROS 
and iron concentrations, which supports an inhibitory 
role of LSH in ferroptosis [6]. We demonstrated that 
LSH is resistant to ferroptotic cell death in cancer cells 
after the treatment of erastin, a ferroptosis inducer, and 
inhibits ferroptosis by inhibiting the cysteine/glutamate 
antiporter system. RNA sequencing analysis results 
also showed that LSH is significantly associated with 
the metabolic process, indicating that LSH inhibits fer-
roptosis by affecting these metabolic genes [6]. Interest-
ingly, antioxidant reagents, vitamin C, and aspirin do 

not affect the expression of LSH or mitochondria related 
genes [6]. Vitamin E is regarded as a highly efficient fer-
roptosis inhibitor. However, vitamin E did not affect LSH 
expression, indicating that types of cells and diseases 
might affect the efficiency of ferroptosis inhibitors. Lipid 
ROS and iron accumulation is a key characteristic of fer-
rotosis; we showed that both SCD1 and FADS2, which 
are linked with lipid metabolism, influenced ferroptosis 
by affecting the lipid ROS and iron levels [6]. Moreover, 
inducing ferroptosis including well-designed nanomedi-
cines might provide a new insight to treat cancer.

NormalHypoxia

EGLN1/3

c-Myc

HIF-1α

EGLN1/3HIF-1α

c-Myc
LSH mRNA

WDR76

Metabolic genes

SCD1, FADS2 mRNA

SCD1 FADS2

Iron Lipid ROS Ferroptosis

(Non-apoptotic, iron-dependent, oxidative cell death)

Cancer cells

Invasion and metastasisTumor growth
Fig. 1  LSH-mediated inhibition of ferroptosis and enhancement of lung tumorigenesis. In this model, LSH acts as a novel inhibitor of ferroptosis by 
regulating several metabolism-related genes. LSH expression is up-regulated by c-Myc, which is enriched at the LSH promoter by the EGLN1-medi-
ated repression of HIF-1α. The induced LSH interacts with WDR76, which, in turn, up-regulates the lipid metabolic genes including SCD1 and FADS2. 
These metabolic genes inhibit the accumulation of lipid ROS and intracellular iron, which are required for ferroptosis, and inhibition of ferroptosis by 
LSH ultimately promotes cancer progression. HIF-1α hypoxia-inducible factor-1α, EGLN1/3 Egl-9 family hypoxia-inducible factor 1/3, LSH lymphoid-
specific helicase, WDR76 WD repeat-containing protein 76, SCD1 stearoyl-CoA desaturase 1, FADS2 fatty acid desaturase 2, ROS reactive oxygen 
species
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The iron-dependent enzymes Egl nine homolog 
(EGLNs) catalyze hypoxia-inducible factor (HIF) prolyl 
hydroxylation, which leads to HIF-1α and HIF-2α deg-
radation. HIF-1α regulates oxygen-dependent glucose 
and glutamine metabolism, playing a critical role in can-
cer progression [9]. In fact, EGLN1 inhibition causes 
accumulation of circulating metabolites [9]. Interest-
ingly, some oncometabolites stimulate EGLN activity, 
which leads to diminished HIF levels. For example, high 
extracellular glutamate levels inhibit the xCT gluta-
mate-cysteine antiporter (a glial transporter protein that 
exports substantial amounts of glutamate into the extra-
cellular fluid) and thereby interfere with cysteine uptake, 
which results in decreased intracellular cysteine levels 
[9]. Decreased intracellular cysteine levels inhibit EGLN 
activity and stabilize HIF-1α [10]. We found previously 
that oncometabolites also activated LSH expression [4]; 
on the basis of this, our recent study found that EGLN1 
up-regulated LSH expression by inhibiting HIF‐1α, which 
highlights HIF‐1α as a key repressor of LSH expression 
[6]. EGLN2 is essential for cell death and is a candidate 
driver of iron chelation-mediated inhibition of cell death. 
Interestingly, HIF-1α and c-Myc counteract each other. 
Our study found that c-Myc was recruited to the HIF-1α-
binding site on the LSH promoter in the normoxic state 
[6].

In summary, we demonstrated the crucial role of LSH 
in ferroptosis (Fig.  1) and considered LSH a potential 
therapeutic target for cancer treatment. Our findings 
demonstrate that ferroptosis is epigenetically regulated 
by LSH, which promotes lipid metabolic genes, including 
SCD1 and FADS2; both FADS2 and SCD1 link with the 
glutamate antiporter. Our results suggest that a preferen-
tial triggering of ferroptosis in cancer cells may serve as a 
viable therapeutic option.
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