
MicroRNAs in nasopharyngeal carcinoma

Review

Chinese Journal of Cancer

Authors′ Affiliations: 1Princess Margaret Cancer Centre, University 
Health Network, Toronto, ON, Canada; 2Department of Radiation 
Oncology, Princess Margaret Cancer Centre, University Health Network, 
Toronto, ON, Canada; 3Department of Radiation Oncology, University 
of Toronto, Toronto, ON, Canada; 4Department of Medical Biophysics, 
University of Toronto, Toronto, ON, Canada.
Corresponding Author: Fei-Fei Liu, Department of Radiation 
Oncology, Princess Margaret Cancer Centre, 610 University Avenue, 
Toronto, Ontario, Canada M5G 2M9. Te1: +1-416-946-2123; Fax: +1-
416-946-4586; Email: Fei-Fei.Liu@rmp.uhn.on.ca.
doi: 10.5732/cjc.014.10175

Jeff P. Bruce1 and Fei-Fei Liu1,2,3,4

Abstract 
      MicroRNAs (miRNAs) provide insight into both the biology and clinical behavior of many human 
cancers, including nasopharyngeal carcinoma (NPC). The dysregulation of miRNAs in NPC results in 
a variety of tumor-promoting effects. Furthermore, several miRNAs are prognostic markers for NPC. In 
addition to cellular miRNAs, NPC samples also often contain miRNAs encoded by Epstein-Barr virus, and 
these miRNAs may impact NPC biology by targeting both cellular and viral genes. Given their numerous 
putative roles in NPC development and progression, a thorough understanding of the impact of miRNA 
dysregulation in NPC is expected to shed light on useful biomarkers and therapeutic targets for the clinical 
management of this disease.  In this review, we describe the efforts to date to identify and characterize 
such miRNAs in the context of NPC. 
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      MicroRNAs (miRNAs) have been shown to provide insight into 
both the biology and clinical behavior of numerous human cancers, 
including nasopharyngeal carcinoma (NPC). miRNAs are known to 
function as both tumor suppressor genes and oncogenes, and their 
dysregulation has been found to be related to disease prognosis and 
clinical outcome. Hence, the examination of miRNA dysregulation 
in NPC can (1) provide useful insight into the biological workings of 
this disease, aiding in the development of novel targeted therapies 
and (2) provide clinical prognostic and predictive biomarkers to aid 
physicians in treatment decision making, and thus improve outcome 
for future NPC patients.

miRNAs
      miRNAs are endogenous, small (18–25 nt), non-protein-coding 
RNA molecules[1]. Originally discovered in C. elegans, miRNAs 
have now been identified in over 200 different species[2]. In general, 
miRNAs bind to transcripts of target protein-coding genes in a 
sequence-specific manner, functioning primarily to decrease the 
transcript and/or protein levels of their targets. However, miRNA-
target interactions resulting in increased protein levels have also 

been noted[3,4]. In recent decades, miRNAs have been increasingly 
recognized as important genetic regulators in the mammalian 
system[1]. Moreover, numerous miRNAs have been reported to 
function as both oncogenes and tumor suppressors, regulating tumor 
initiation and progression at all levels[5].  

miRNA Biogenesis and Function
      The biogenesis of miRNAs is a multistep process that is tightly 
regulated within the cell. Figure 1 depicts the steps in canonical 
miRNA processing—from transcription in the nucleus to the 
interaction with mRNAs in the cytoplasm. Genes that encode 
miRNAs can be located in intergenic regions or within the exons or 
introns of other genes. Transcription of these miR-genes is performed 
predominantly by RNA polymerase II (Pol II), though RNA Pol III 
performs transcription in some cases[6,7]. A variety of Pol II–associated 
transcription factors direct miRNA transcription, thereby regulating 
miRNA expression at the level of transcription[8]. The RNA product 
that is transcribed is called a primary miRNA (pri-miRNA). These pri-
miRNAs vary in length from hundreds to thousands of base pairs and 
exist in diverse stem-loop structures[6]. Following transcription, the pri-
miRNA is cleaved within the nucleus by the type III RNase Drosha, in 
association with DiGeorge syndrome critical region gene 8 (DGCR8), 
at the stem of the loop structure to release a ~70 nt precursor miRNA 
(pre-miRNA)[6]. This pre-miRNA is then exported out of the nucleus 
by the dsRNA-specific transporting complex composed of Exportin-5 
and GTP-bound ras-related nuclear protein (RAN-GTP)[9]. 
      In the cytoplasm, the pre-miRNA is further processed by Dicer 
and its cofactor trans-activation-responsive RNA-binding protein 
(TRBP) to release the ~22 nt, mature miRNA duplex[6]. One strand 
of this duplex, termed the “guide strand,” is then preferentially 
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Figure 1. MicroRNA (miRNA) biogenesis. miRNAs are processed through a complex series of highly regulated steps in the nucleus and the cytoplasm, 
from transcription through to their functional roles as transcript and protein level regulators. Abbreviations: RNA Pol II, RNA polymerase type II; pri-
miRNA, primary microRNA; pre-miRNA, precursor microRNA; DGCR8, Drosha-DiGeorge syndrome critical region gene 8; XPO5, nuclear export factor 
exportin 5; RAN, ras-related nuclear protein; GTP, guanosine tri-phosphate; AGO, Argonaute; TRBP, TAR (HIV-1) RNA-binding protein 2; PACT, protein 
kinase, interferon-inducible double stranded RNA; Dicer, Dicer 1 ribonuclease Type III; miR*, passenger strand from mature miRNA duplex; miRISC, 
microRNA RNA-induced silencing complex; P-body, processing body.

incorporated into the miRNA-inducible silencing complex (mi-
RISC)[6]. Although this process is not completely understood, the 
guide strand is almost always the strand with the 5’ terminus that is 
least thermodynamically stable[10]. The miRISC is a multipart entity 
with several potential members. The key functional element of 
miRISC is the Argonaute protein (in mammals, one of AGO1-4)[6]. 
In addition to Argonaute, several other proteins may be involved in 
miRISC, including the P-body marker fragile X mental retardation 1 
protein (FMRP)[11] and the de-capping activator RCK/p54[12,13].
      Once a mature miRNA is incorporated, miRISC can then bind to a 

target mRNA at a sequence-specific binding site. A particular miRNA 
may bind to hundreds of different genes, sometimes even onto 
multiple sites for a given target mRNA. Binding occurs with either 
perfect complementarity or, more often, imperfect complementarity[5]. 
In these instances of imperfect complementarity, there is often a 
short, ~6–8 nt “seed” region, located near the 5’ end of the miRNA, 
which appears to be of paramount importance in terms of dictating 
binding to specific target mRNAs[1]. These seed regions are often 
conserved among species and form the basis for many of the current 
in silico target prediction algorithms[6,14-16].



541

MicroRNAs in NPCJeff P. Bruce et al.

Chin J Cancer; 2014; Vol. 33 Issue 11www.cjcsysu.com

      miRNAs can regulate expression of their targets through either 
mRNA degradation or translational inhibition. In instances of perfect 
or near-perfect miRNA-mRNA complementarity, degradation of 
target mRNAs can be mediated by AGO2, the only Argonaute protein 
with “slicer” activity[6]. In cases of imperfect complementarity, all 
4 Argonaute proteins are capable of inhibiting protein translation 
as part of miRISC[6]. In addition, miRNA-target relationships with 
imperfect binding can also result in mRNA degradation through a 
non-sequence-specific mechanism within cytoplasmic processing 
bodies (P-bodies)[17]. In most cases, the net effect of miRISC binding 
to a target mRNA is a decrease in its protein levels. However, 
recent reports have demonstrated a few instances wherein protein 
levels is actually increased[6]. For example, miR-10A can bind the 
5’ untranslated region (UTR) of the mRNA transcript for several 
ribosomal genes, increasing the expression of these genes[3].  
 
miRNAs in Cancer
      As the list of miRNAs has grown, so has our knowledge regarding 
their biological functions. Indeed, miRNAs have been found to play 
a role in most, if not all, cellular processes, including many pathways 
related to cancer development and progression. miRNAs function 
as tumor suppressor genes or oncogenes, with some miRNAs 
mediating contradictory roles in different diseases[5]. Aberrant miRNA 
expression and function have been described in a wide variety of 
human malignancies, with chromosomal amplifications/deletions, 
point mutations, or epigenetic alterations as potential causes[5].
      Comprehensive miRNA expression profiling has been performed 
in a variety of human cancers, yielding a number of interesting 
observations. These include expression signatures that are capable 
of distinguishing cancer cells from normal cells[5] or one cancer from 
another[18]; predicting response to a particular drug[19]; or predicting 
patient outcome[20,21]. Indeed, miRNA signatures capable of predicting 
patient outcome have been developed for a number of human 
cancers including lung cancer[22,23], breast cancer[24], brain caner[25], 
and chronic lymphocytic leukemia[26]. Prognostic, predictive, and 
biological roles have also been described for miRNAs in NPC, as 
discussed below.

Human miRNA expression in NPC

      The first study on the global profiling of miRNAs in NPC was 
published in 2008 by Paul Ahlquist’s group at the National Cancer 
Institute (NCI)[27]. Using a microarray-based approach to profile 
31 laser-capture microdissected NPC samples and 10 normal 
nasopharyngeal epithelial samples, they discovered several miRNAs 
to be dysregulated in NPC[27]. In particular, miR-29c was significantly 
down-regulated in NPC, and several miR-29c targets involved 
in extracellular matrix synthesis and function were identified and 
validated[27]. Subsequently, other groups have identified a number 
of dysregulated miRNAs in both nasopharyngeal tumor and blood 
samples from patients with NPC (Table 1).
      In addition to alterations in miRNA expression in NPC, we 
and others have demonstrated phenotypic roles for miRNAs in 
nasopharyngeal tumorigenesis using in vitro and in vivo models. 

The first miRNA characterized in the context of NPC was miR-29c, 
which was the main focus of the first miRNA profiling reported by 
Sengupta et al.[27]. In this initial study, the authors demonstrated that 
miR-29c plays a potential tumor suppressive role, targeting mRNAs 
that encode extracellular matrix proteins (collagens 3A1, 4A1, and 
15A1, and laminin γ1)[27]. They postulated that suppression of miR-
29c will subsequently increase the migration and invasion of NPC 
cells through up-regulation of these components of the extracellular 
matrix. However, they stopped short of testing this hypothesis in the 
initial study, and further reports supporting these claims have not 
been published to date. Subsequent studies by two other groups 
corroborated the role of miR-29c as a tumor suppressor in NPC, 
but these reports differed in their causal mechanisms and putative 
targets. While Liu et al.[28] demonstrated that down-regulation of miR-
29c resulted in the promotion of NPC cell migration and invasion 
through increased expression of T-cell lymphoma invasion and 
metastasis 1 (TMP1), Zhang et al .[29] showed that miR-29c knock-
down resulted in increased resistance to radiotherapy and cisplatin 
through up-regulation of the anti-apoptotic regulators Mcl-1 and Bcl-2. 
Thus, much like other miRNAs, miR-29c can act through a number of 
pathways to suppress the proliferation, survival, and motility of NPC 
cells.
      In 2011, we reported that miR-375 is a potential tumor suppressor 
in head and neck cancers, including NPC[30]. We discovered that 
metadherin (MTDH), a newly emerging oncogene, was an important 
target for down-regulation by miR-375 and that MTDH overexpression 
was particularly detrimental to NPC patients, resulting in an increased 
risk of distant relapse[30].
      Another moderately well studied miRNA in the context of NPC is 
miR-9. Not only has miR-9 been identified as a potential circulating 
biomarker of advanced NPC[31], several potential targets and 
functions of miR-9 have also been reported. Recently, two studies 
describing putative tumor suppressive mechanisms for miR-9 in NPC 
have been published[32,33]. Lu et al.[32] reported that hypermethylation 
and subsequent underexpression of miR-9 led to up-regulation of its 
putative target C-X-C chemokine receptor type 4 (CXCR4), resulting 
in increased cell growth, migration, and invasion through activation 
of the Mitogen-activated protein kinase (MAPK) pathway. In contrast, 
Gao et al.[33] postulated a role for miR-9 in modulating the immune 
response to NPC by targeting several interferon (IFN)-induced genes, 
multiple members of the major histocompatibility complex (MHC) 
class I molecule, and a number of interleukins and related genes.
      Other potential, functionally active miRNAs in NPC include miR-
26a[34,35], miR-98[36], miR-155[37,38], miR-200a/b[39-41], miR-205[42,43], and 
miR-216b[44]. Proposed targets of these miRNAs represent regulators 
of important processes such as the epithelial-to-mesenchymal 
transition (EMT)[39], as well as signaling pathways including Notch[41], 
phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-Akt[42], and 
MAPK[44]. Intriguingly, the function, pathways, and targets affected 
by many of the miRNAs involved in nasopharyngeal tumorigenesis 
overlap. Two such miRNAs are miR-26a and miR-218, which both 
target enhancer of zeste homolog 2 (EZH2), resulting in decreased 
oncogenic properties of migration, invasion, and cell survival[35,36]. This 
overlapping functional impact of multiple miRNAs adds an increased 
layer of complexity when attempting to elucidate their biological role; 
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however, this property could also increase our confidence in the 
biological importance of affected genes and pathways, given that 
there are multiple mechanisms that malignant cells exploit to activate 
or inhibit the same gene or pathway.

miRNAs encoded by Epstein-Barr virus in NPC

      Epstein-Barr virus (EBV), which is present in the vast majority of 
NPC, also encodes a number of its own miRNAs. Twenty-five EBV-
encoded pre-miRNAs, which are processed into 44 mature miRNA 
sequences, have been verified to date[2]. These miRNA emanate from 
two major regions of the EBV genome: (1) the BamHI-A rightward 
transcripts (BART) and (2) the open reading frame of the BHRF1 
gene. Originally cloned from EBV-infected Burkitt’s lymphoma 
cells[45], BHRF1-encoded miRNAs do not appear to be expressed in 
EBV-positive NPC primary tissues[46,47]. Indeed, in the first report of 
comprehensive EBV miRNA profiling in primary NPC, the majority of 
samples showed substantial expression of all 35 interrogated BART-
encoded miRNAs but no expression of the 4 interrogated BHRF1-
encoded miRNAs. In contrast, NPC-derived cell lines C666-1 and 
HONE-Akata expressed all 4 BHRF1-derived miRNAs in addition to 
the 35 interrogated BART-encoded miRNAs[46].  Subsequent studies 

have identified several targets of EBV miRNAs, both host and viral. 
Viral targets include latent membrane protein 1 (LMP1), putatively 
targeted by several miRNAs from the BART region (ebv-miR-BART1, 
9, 16, 17)[46,48,49], and LMP2A, a target of ebv-miR-BART22[50]. 
Subsequent functional experiments suggest that modulation of 
these viral proteins by BART-encoded miRNA can influence multiple 
cellular properties including cell proliferation, survival, and evasion of 
host immune response[48-50]. Host targets of BART-encoded miRNAs 
include the pro-apoptotic effectors p53 up-regulated modulator 
of apoptosis (PUMA)[51], Bcl-2 interacting mediator of cell death 
(Bim)[52], and translocase of outer mitochondrial membrane 22 
homolog (TOMM22)[53], as well as several genes thought to influence 
host immune response, including MHC class I-related chain B 
(MICB)[54], importin 7 (IPO7)[53,55], and Dicer[56]. Overall, EBV-encoded 
miRNAs play a complementary role to the viral proteins expressed 
in NPC, contributing to evasion of the host immune response and 
promoting the survival and proliferation of NPC cells.

Conclusions
      In summary, the interrogation of miRNAs in the context of NPC 
has provided both clinical and biological insight into the behavior 

Table 1. Summary of microRNA (miRNA) expression in studies using primary nasopharyngeal carcinoma (NPC) 
samples

The miRNAs included in this table Satisfy each of the following criteria: (1) a statistically significant alteration in their expression was identified 
in specimens from patients with NPC; and (2) some degree of validation (either in additional samples, using an alternate analytical method, or 
functional validation) was reported. Patients with NPC vs. healthy controls: for these miRNAs, levels were significantly increased (“up-regulated”) 
or decreased (“down-regulated”) in tumors and plasma from patients with NPC compared with nasopharyngeal tissues and plasma from healthy 
controls. Prognostic association: expression higher (“positive”) or lower (“negative”) in tumor and plasma samples from patients with poor 
prognosis. Superscripts: expression measured in *plasma and Ŧserum. All others were discovered using tumor samples.

Patients with NPC vs. healthy controls	                                                   Prognostic association
Up-regulated Down-regulated Positive Negative

*miR-16[57]   let-7g[58]   miR-18a[59] *miR-9[31]

 ŦmiR-17[60] *miR-9[31]  ŦmiR-22[61]   miR-26a[62]

  miR-18a[59]   miR-26a[11,36,58,62]   miR-93[62]   miR-29c[29,62]

 ŦmiR-20a[60]   miR-26b[36]  ŦmiR-572[61]   miR-30e[62]

*miR-21[57]   miR-29c[27,62]  ŦmiR-638[61]   miR-451[63]

*miR-24[57]  ŦmiR-29c[60]   miR-98[36]

  miR-93[62]   miR-30e[62]   miR-142-3p[62]

  miR-141[64]   miR-34b[58]  ŦmiR-1234[61]

  miR-144[65]   miR-101[36]

  miR-146a[66,67]   miR-138[68]

  miR-155[38]   miR-142-3p[62]

*miR-155[37,69]   miR-200b[41]

*miR-214-3p[31]   miR-216b[44]

  miR-214-3p[70]   miR-218[71]

  miR-663[72]  ŦmiR-223[60]

*miR-3135a[31]   miR-375[30]

*miR-378[57]

  miR-451[63]
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of this disease. Further development of strategies to measure and 
manipulate miRNAs and their targets in a clinical setting would be 
required before such findings can be translated into improvements in 

the management of this disease.

Received: 2014-09-08; accepted: 2014-10-14.
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