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Abstract 
Esophageal squamous cell carcinoma (ESCC) is a prevalent and fatal cancer in China and other 

Asian countries. Epigenetic silencing of key tumor suppressor genes (TSGs) is critical to ESCC initiation 
and progression. Recently, many novel TSGs silenced by promoter methylation have been identified in 
ESCC, and these genes further serve as potential tumor markers for high鄄  risk group stratification, early 
detection, and prognosis prediction. This review summarizes recent discoveries on aberrant promoter 
methylation of TSGs in ESCC, providing better understanding of the role of disrupted epigenetic regulation 
in tumorigenesis and insight into diagnostic and prognostic biomarkers for this malignancy. 
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Esophageal cancer is the sixth most common cancer 
worldwide but has a unique geographic and ethnic 
distribution [1] , with a higher incidence in Asia than in the 
West. In some endemic districts in northern and central 
China, its incidence exceeds 100 cases per 100 000 
people per year, comprising 78% of annual new cases 
and 76% of annual deaths of total carcinoma cases [2] . 
Esophageal cancer has two main types with different 
etiologic and pathologic characteristics: esophageal 
squamous cell carcinoma (ESCC) and esophageal 
adenocarcinoma [3] . Notably, ESCC is the predominant 
type and accounts for approximately 90% of esophageal 
cancer cases worldwide [4] . Although the overall  effective鄄  
ness of surgical and medical treatments for ESCC has 
improved in recent years, its prognosis still remains poor, 
with a 5­year survival rate of less than 10% for the 
patients [5] . Thus, elucidating the molecular mechanisms 

of ESCC pathogenesis will help to identify specific tumor 
markers for early detection, risk assessment, and 
therapeutic targeting. 

Both genetic and epigenetic alterations contribute to 
the initiation and progression of ESCC. Genetic 
abnormalities involved in ESCC tumorigenesis include 
chromosomal loss and gain, loss of heterozygosity 
(LOH), and gene amplification and mutation [6] . Recently, 
epigenetic disruptions, including promoter CpG island 
methylation of tumor suppressor genes (TSGs) and 
microRNA methylation [7,8] , have been recognized as key 
events in ESCC development. Here, we provide an 
overview of aberrant promoter methylation of critical 
TSGs in ESCC and the potential of these alterations as 
both tumor markers and therapeutic targets for ESCC. 

TSGs Silenced by Promoter Methylation 
in ESCC 

We briefly summarized the epigenetically silenced 
TSGs in ESCC according to their biological functions, 
such as apoptosis, cell cycle control, cell adhesion, and 
DNA repair (Table 1). Major functional groups are briefly 
reviewed below. 

Cell cycle control genes 

and  , transcripts of the cyclin­ 
dependent kinase inhibitor 2A (  ) locus on 
chromosome 9p21, are two well­studied TSGs that are 
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Classification 

Cell cycle 
control genes 

Pro鄄  apoptotic 
genes 

Metastasis鄄  
antagonizing 
genes 

DNA repair 
genes 

Growth factor 
response鄄  
related genes 

WNT 
signaling鄄  
related genes 

Other genes 
with tumor 
suppressive 
functions 

Gene name 
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Full name Location Major functions Reference(s) 

Checkpoint with forkhead and ring finger 
domains 
Cyclin鄄  dependent kinase inhibitor 2A 
Cyclin鄄  dependent kinase inhibitor 2B 
Cyclin鄄  dependent kinase inhibitor 2A 
RAS association domain family 1A 
Death鄄  associated protein kinase 
Runt鄄  related transcription factor 3 
Ubiquitin carboxyl鄄  terminal hydrolase L1 
Zinc finger protein 382 
Cadherin 1, E鄄  cadherin 
Cadherin 11, OB鄄  cadherin 
Cadherin 13, H鄄  cadherin 
Claudin 3 
Claudin 4 
Deleted in colorectal carcinoma 
Low density lipoprotein receptor鄄  related 
protein 1B 
Protocadherin 10 
Protocadherin 17 
Tumor suppressor in lung cancer 1 
Uroplakin鄄  1A 
Fragile histidine triad 
O6鄄  methylguanine鄄  DNA 
methyltransferase 
Human mutL homolog 1 
Human mutS homolog 2 
Retinol鄄  binding protein 1, cellular 
Cellular retinoic acid鄄  binding protein 1 
Disabled homolog 2, mitogen鄄  responsive 
phosphoprotein 
Retinoic acid receptor, beta 
Retinoic acid receptor responder 
(tazarotene induced) 1 
Suppressor of cytokine signaling 1 
Adenomatous polyposis coli 
Secreted frizzled鄄  related protein 1 
Secreted frizzled鄄  related protein 2 
SRY box 17 
Wnt inhibitory factor 1 
Wingless鄄  type MMTV integration site 
family, member 5A 
ADAM metallopeptidase with 
thrombospondin type 1 motif, 9 
ADAM metallopeptidase with 
thrombospondin type 1 motif, 18 
Zinc finger, MYND鄄  type containing 10 
Calcium channel, voltage鄄  dependent, T 
type, alpha 1G subunit 
Caudal type homeobox 2 

CHFR 

p14 ARF /CDKN2A 
p15 INK4b /CDKN2B 
p16 INK4a /CDKN2A 
RASSF1A 
DAPK 
RUNX3 
UCHL1 
ZNF382 
CDH1 
CDH11 
CDH13 
CLDN3 
CLDN4 
DCC 
LRP1B 

PCDH10 
PCDH17 
TSLC1 
UPK1A 
FHIT 
MGMT 

MLH1 
MSH2 
CRBP1 
CRABP1 
DAB2 

RARB 
RARRES1 

SOCS1 
APC 
SFRP1 
SFRP2 
SOX17 
WIF1 
WNT5A 

ADAMTS9 

ADAMTS18 

BLU/ZMYND10 
CACNA1G 

CDX2 

12q24.33 

9p21 
9p21 
9p21 
3p21.3 
9q34.1 
1p36 
4p14 
19q13.12 
16q22.1 
16q21 
16q23.3 
7q11.23 
7q11.23 
18q21.3 
2q21.2 

4q28.3 
13q21.1 
11q23.2 
19q13.13 
3p14.2 
10q26 

3p21.3 
2p21 
3q23 
15q24 
5p13 

3p24 
3q25.32 

16p13.13 
5q21-q22 
8p11.21 
4q31.3 
8q11.23 
12q14.3 
3p21-p14 

3p14.1 

16q23 

3p21.3 
17q22 

13q12.3 

Cell cycle control 

Stabilizing p53, cell cycle control 
Cell cycle control 
Cell cycle control 
Cell cycle control, apoptosis 
Apoptosis 
Transcription factor 
Cell growth inhibition, apoptosis 
Pro鄄  apoptotic transcription factor 
Cell adhesion, proliferation, metastasis 
Cell adhesion, proliferation, metastasis 
Cell adhesion, proliferation, metastasis 
Cell鄄  cell adhesion 
Adhesion melocule 
Cell adhesion, differentiation, apoptosis 
Migration 

Cell鄄  cell connection 
Cell鄄  cell connection 
Cell adhesion 
Tetraspanin cell surface receptor 
Cell cycle control, DNA鄄  damage response 
DNA repair 

DNA repair, cell cycle control 
DNA mismatch repair, cell cycle control 
Retinol transport 
Differentiation and proliferation 
Growth factor response, blocks Ras 
activity 
Cell growth and differentiation 
Retinoid signaling 

Negative regulator of JAK/STAT pathway 
Cell polarity and chromosome segregation 
Antagonist of WNT protein receptors 
Antagonist of WNT protein receptors 
WNT antagonist 
WNT鄄  signaling pathway inhibitor 
WNT鄄  signaling pathway inhibitor 

Metallopeptidase activity 

Metallopeptidase activity 

Stress鄄  response, transcription factor 
Cell proliferation and cell death 

Transcription factor activity 

[16] 

[11,19] 
[11] 
[11,19] 
[14] 
[19,67] 
[14,21,22] 
[23,24] 
[77] 
[27-29] 
[30] 
[31] 
[32] 
[33] 
[34] 
[35] 

[36] 
[37] 
[38] 
[72] 
[53-55] 
[41-44] 

[47-49] 
[50] 
[78] 
[79] 
[80] 

[3,58-61] 
[81] 

[78] 
[69] 
[19,82] 
[19] 
[83] 
[84] 
[85] 

[86] 

[87] 

[88] 
[19] 

[89] 
(To be continued) 
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inactivated by genetic or epigenetic alterations in multiple 
malignancies [9,10] . In ESCC,  was methylated in 
40% ­61% of primary tumors and was less frequently 
inactivated due to homozygous deletion or mutation [11,12] , 

whereas  was methylated at a low frequency (13% 
­15% ) and was mainly inactivated due to homozygous 
deletion [11] . These results suggest that promoter  methy­ 
lation is the predominant mechanism for 

Classification 

Other genes 
with tumor 
suppressive 
functions 

Gene name Full name Location Major functions 

CKLF鄄  like MARVEL transmembrane 
domain containing 3 
CKLF鄄  like MARVEL transmembrane 
domain containing 5 
Deleted in liver cancer 1 

Deleted in lung and esophageal cancer 1 
Esophageal cancer鄄  related gene 4 
protein 
Endothelin receptor type B 
Epithelial membrane protein 3 
Endoglin 
GATA鄄  binding protein 4 
GATA鄄  binding protein 5 
Glutathione peroxidase 3 

Glutathione S鄄  transferase pi 1 
Secretoglobin, family 3A, member 1 
HLA class I 
Helicase鄄  like transcription factor 
HOP homeobox 
Heat shock 27kDa protein 2 
Integrin, alpha 4 
Interferon regulatory factor 8 
Metallothionein 1G 
Metallothionein 3 
Glutamate receptor, ionotropic, N鄄  methyl 
D鄄  aspartate 2B 
Neurofilament, heavy polypeptide 
NEL鄄  like 1 
E1A鄄  binding protein p300 
K(lysine) acetyltransferase 2B 
Phospholipase C, delta 1 
Somatostatin 
Tachykinin, precursor 1 
Thrombospondin, type I, domain 
containing 1 
TIMP metallopeptidase inhibitor 3 
Transmembrane protein with EGF鄄  like 
and two follistatin鄄  like domains 2 
Trypsinogen 4 
von Hippel鄄  Lindau tumor suppressor 

CMTM3 

CMTM5 

DLC1 

DLEC1 
ECRG4 

EDNRB 
EMP3 
ENG 
GATA4 
GATA5 
GPX3 

GSTP1 
HIN1/SCGB3A1 
HLA-I 
HLTF 
HOPX 
HSPB2 
ITGA4 
IRF8 
MT1G 
MT3 
NMDAR2B 

NEFH 
NELL1 
p300/EP300 
PCAF/KAT2B 
PLCD1 
SST 
TAC1 
THSD1 

TIMP3 
TPEF/TMEFF2 

Trypsinogen 4 
VHL 

16q21 

14q11.2 

8p22 

3p22-p21.3 
2q12.2 

13q22 
19q13.3 
9q33-q34.1 
8p23.1-p22 
20q13.33 
5q23 

11q13 
5q35-qter 
6p21.3 
3q25.1-q26.1 
4q12 
11q22-q23 
2q31.3 
16q24.1 
16q13 
16q13 
12p12 

22q12.2 
11p15.1 
22q13.2 
3p24 
3p22-p21.3 
3q28 
7q21-q22 
13q14.3 

22q12.3 
2q32.3 

9p11.2 
3p25 

Chemokine activity 

Chemokine activity 

Cytoskeleton organization, signal 
transduction, cell adhesion 
Signal transduction 
Unknown 

G鄄  protein鄄  coupled receptor activity 
Unknown 
Signal transduction 
Zinc鄄  finger transcription factor 
Zinc鄄  finger transcription factor 
Catalyzes the reduction of hydrogen 
peroxide 
Glutathione transferase activity 
Signal transduction 
Immune response 
Helicase and ATPase activities 
Regulation of gene expression 
Heat shock protein activity 
Cell communication, signal transduction 
Transcription factor activity 
Cellular stress response 
Growth inhibition 
Signal transduction 

Cell growth and/or maintenance 
Cell growth regulation and differentiation 
Transcription regulator activity 
Transcription regulator activity 
Phospholipase activity 
Somatostatin hormone 
Tachykinin peptide hormone 
Unknown 

Metalloproteinase inhibitor 
Transmembrane protein 

Proteolytic activity 
Ubiquitin ligase component 

[90] 

[91] 

[92] 

[93] 
[94] 

[95] 
[96] 
[97] 
[98] 
[98] 
[99] 

[100] 
[101] 
[102] 
[103] 
[104] 
[105] 
[29] 
[106] 
[32] 
[107] 
[70] 

[108] 
[109] 
[110] 
[111] 
[112] 
[113] 
[65] 
[71,114] 

[71] 
[115] 

[116] 
[117] 

ADAM, disintegrin and metalloprotease domain; CKLF, chemokine鄄  like factor; HLA, human leukocyte antigen; HOP, homeodomain鄄  only protein; 
MYND, myeloid, Nervy, and DEAF鄄  1; NEL, neural epidermal growth factor鄄  like; SRY, sex鄄  determining region Y; TIMP, tissue inhibitor of 
metalloproteinase 1. 
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inactivation but not  during ESCC pathogenesis  [11] . 
As a gatekeeper for G 1 /S cell cycle progression, the 

RAS association domain family 1A (  ) gene is 
epigenetically inactivated in a broad spectrum of tumors [13] . 
In ESCC,  was methylated in 51% of primary 
tumors, but rarely in matched non­cancerous tissues [14] . 
In addition,  methylation was correlated with 
the clinical stage of ESCC [14] . Remarkably, the frequency 
of  methylation in Chinese ESCC patients was 
relatively lower than that in Japanese ESCC patients [15] , 
indicating that a possibly different mechanism is involved 
in  methylation among these populations. 
Other cell cycle control genes silenced by promoter 
methylation have also been reported in ESCC, such as 

and checkpoint with forkhead and ring finger 
domains (  ) [11,16]  (Table 1). 

Pro鄄  apoptotic genes 

Death­associated protein kinase (  ), a gene that 
encodes a pro­apoptotic serine/threonine kinase, 
participates in various apoptotic pathways in response to 
tumor necrosis factor­琢  (TNF­琢  ), Fas ligand, ceramide, 
tumor growth factor­茁   (TGF­茁  ), arsenic trioxide, and 
detachment from the extracellular matrix [17,18] . Promoter 
methylation of  was frequently detected in 
intraepithelial lesions and primary ESCC [19] , but rarely in 
normal and non­neoplastic epithelia, suggesting a role of 
methylation­mediated  silencing in ESCC 
progression. 

The runt­related transcription factor 3 (  ) gene 
encodes RUNX3, a pro­apoptotic factor in the TGF­β 
signaling pathway that is commonly silenced in a variety 
of human tumors [20] . In ESCC,  silencing by 
promoter methylation [21]  induced tumor progression and 
worsened patient prognosis [22] . As different frequencies of 

methylation were reported in ESCC, the precise 
CpG region at which the  promoter is methylated 
for silencing needs to be further confirmed. 

In addition, other novel methylated pro­apoptotic 
genes have been identified in ESCC. For instance, 
ubiquitin carboxyl­terminal hydrolase L1 (  ), 
located on chromosome 4p14, can induce apoptosis 
through the intrinsic, caspase­dependent pathway [23] . 
Studies showed that  was methylated in 40% of 
primary ESCCs but not in the paired adjacent non­tumor 
tissues [23] . Furthermore,  methylation was correlated 
with regional lymph node metastasis [24] . These findings 
indicate that  may serve as an independent 
prognostic factor for ESCC patient survival. 

Metastasis鄄  antagonizing genes 

Cadherin 1 (  ), which encodes a transmembrane 
glycoprotein, is a classic TSG at 16q22.1 and acts as a 

key cell­cell adhesion molecule to maintain normal tissue 
architecture and inhibit tumor initiation [25] . The inactivation 
of  occurs at different stages of tumorigenesis, 
even at an early stage [26] .  silencing with promoter 
methylation was detected in 41%­80% of primary ESCCs, 
which is related with poor survival of patients with stage I 
and stage II ESCC [27­29] . Similarly, other genes related to 
cell adhesion silenced by promoter methylation, such as 
cadherin 11 (  ) [30] , cadherin 13 (  ) [31] , claudin 
3 (  ) [32] , claudin 4 (  ) [33] , deleted in colorectal 
carcinoma (  ) [34] , low density lipoprotein receptor­ 
related protein 1B (  )  [35] , protocadherin 10 
(  ) [36] , protocadherin 17 (  ) [37] , and tumor 
suppressor in lung cancer 1 (  ) [38] , have already 
been determined to be involved in tumor invasion and 
metastasis of ESCC (Table 1). 

DNA repair genes 

The product of the O­6­methylguanine­DNA methyl鄄  
transferase (  ) gene mediates a unique DNA repair 
pathway by removing methyl/alkyl  groups from O­6­alkyl­ 
guanine (G) and thus protects cells from mutagenic and 
cytotoxic effects of alkylating agents [39] .  was 
reported to be epigenetically silenced in about 30% of 
human cancers due to promoter methylation [40] . In ESCC, 

methylation was increased along with tumor 
progression [41] . Notably,  methylation was associated 
with  mutations [42]  or the C677T polymorphism of 
5,10­methylenetetrahydrofolate (  ) in ESCC 
patients [43,44] , suggesting a synergistic effect of both epi鄄  
genetic and genetic mechanisms in ESCC pathogenesis. 

Mismatch repair gene mutL homolog 1 (  ) was 
reported to be inactivated by genetic or epigenetic 
alterations in multiple human cancers [45,46] . Promoter 
methylation of  , which reduced its protein 
expression level, was detected in 62% of ESCCs  [47] . 
Interestingly, epigenetically silenced  was always 
associated with microsatellite instability in ESCC  [48,49] , 
indicating that  plays a critical role in ESCC 
progression.  , another important DNA mismatch 
repair gene, was also silenced by promoter methylation 
in 32% of ESCCs but none of the matched normal 
tissues [50] . 

The fragile histidine triad (  ) gene, located at 
3p14.2 [51] , plays an essential role in chromosomal 
abnormality and DNA damage [52] .  was methylated 
in 69% of ESCCs but not in the matched normal tissues, 
and this methylation was responsible for decreased FHIT 
protein level [53] . Loss of FHIT expression was usually 
observed at initial stages of ESCC [54]  and thus might 
serve as an independent prognostic marker  and as a 
marker for early detection of ESCC [55] . In  addition, 
aberrant methylation of  can also be  induced by 
nicotine [56] , indicating its role in smoking­related ESCC 
tumorigenesis. 
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Growth factor response鄄  related genes 

Retinoids play an important role in growth arrest and 
apoptosis via binding to specific nuclear retinoid 
receptors, such as retinoic acid receptor 茁  (RAR茁  ) [57] . 
Loss of expression of  , the gene encoding RAR茁  , 
was observed in 54% of ESCCs and 57% of dysplastic 
lesions  [58] , with no LOH detected [59] . Frequent promoter 
methylation of  was detected in primary ESCC 
tumors (70%), dysplastic lesions (58%), and basal cell 
hyperplasia (43%) but rarely in normal tissues, and 
methylation was related with ESCC grade [60] . Moreover, 

expression could be reactivated by pharmacologic 
demethylation treatment  [61] . These data suggest that 

silencing by promoter methylation is an early 
event in ESCC development. 

Promoter Methylation of TSGs as 
Tumor Markers for ESCC 

Detecting promoter methylation of TSGs has 
advantages compared to protein or RNA analysis. First, 
DNA can be released outside of the tumor mass and is 
more stable than RNA or protein, which makes 
DNA­based markers easier to obtain from distinct types 
of biological fluid (such as sputum, pancreatic juice, and 
urine), blood and tissues (including 10% formaldehyde­ 
fixed samples) [62] . Second, PCR­based analyses of DNA 
methylation have relatively high sensitivity. For example, 
methylation­specific PCR is able to detect a single 
methylated allele among 1000 unmethylated alleles, even 
in the presence of an abundance of normal DNA [63] . Third, 
because DNA used for methylation analysis is chemically 
stabilized, sample handling requirements are not rigid [64] . 
Thus, DNA methylation assays can be exploited as 
potent noninvasive diagnostic methods for clinical 
applications. 

Given the high mortality, early detection or diagnosis 
is essential for successful treatment of ESCC. Promoter 
methylation of multiple TSGs, including  ,  , 

, and tachykinin1 (  ), was 
detected in precancerous basal cell hyperplasia or 
dysplastic lesions, indicating their early diagnostic values 
in ESCC [19,41,61,65] . Furthermore, a panel of four methylated 
genes, aryl­hydrocarbon receptor repressor (  ), 

, metallothionein 1G (  ), and  , was 
used to successfully screen esophageal balloon cytology 
samples with much better specificity and sensitivity 
compared with single­gene methylation [66] . Another panel 
of methylated genes,  ,  ,  ,  , and 

, had a diagnostic sensitivity of 82.2% and a 
specificity of 100% for ESCC in detecting serum DNA of 
ESCC patients [67] . These findings suggest that a cluster 

of methylated TSGs is more efficient for early detection 
of ESCC than single­gene methylation. 

Since TNM staging has a limited capacity in 
assessing tumor prognosis, many studies have been 
performed to establish a reliable technique with which 
to predict prognosis in human cancers. Recently, the 
feasibility of TSG methylation as a predictor of clinical 
outcome after radical surgery has been studied in 
ESCC. For example, promoter methylation of  [29] , 

[55] , and integrin alpha 4 (  ) [29]  can be used to 
stratify patients with stage I and II ESCC. Promoter 
methylation of  [68]  and  [29]  have been linked 
to tumor recurrence, and methylation of other genes 
including adenomatous poly鄄  posis coli (  ) [69] , N­methyl 
D­aspartate 2B (  ) [70] , tachykinin 1 (  ) [65] , 
TIMP metallopeptidase inhibitor 3 (  ) [71] ,  [24] , 
and uroplakin 1A (  )  [72]  have been linked to 
shorter survival. 

Translational Applications of DNA 
Demethylation in ESCC Treatment 

Epigenetic reagents intended to reactivate 
epigenetically silenced TSGs or tumor antigens are being 
tested for their anticancer effects. Nucleoside analogues 
5­azacytidine (azacytidine) or 5­aza­2'­deoxycytidine 
(decitabine) can  effectively reverse silencing of multiple 
TSGs by blocking the activity of DNA methyltransferase 
(DNMT) in tumor cells, thereby exhibiting significant 
tumor suppressive activity [73] . These drugs have been 
approved by the US Food and Drug Administration (FDA) 
for treating myelodysplastic syndrome, a pre­leukemia 
disease. Recently, several novel DNMT inhibitors have 
also been reported for future clinical use, such as 
5­fluoro­2'­deoxycytidine (Zebularine), epigallocatechin­3­ 
gallate (EGCG), and RG108 [64] . However, due to lack of 
specificity for target genes, more studies of 
demethylation therapy are currently being performed to 
prove the efficacy of this approach on solid tumors [74] . 
Although clinical trials using demethylation reagents have 
not been reported in ESCC yet, combining DNA 
demethylation agents with traditional chemotherapy 
drugs should be a promising prospect for ESCC 
treatment in future. 

Conclusions 

ESCC pathogenesis is a multistep process controlled 
by both genetic and epigenetic mechanisms. Silencing 
TSGs by promoter methylation plays essential roles in 
ESCC initiation and development. Numerous methylated 
genes have been identified in ESCC in recent years and 
thus provide new insights into the molecular mechanism 
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of ESCC pathogenesis and expand the knowledge of 
tumor markers for clinical application. However, some 
issues remain to be solved in the future. For example, 
few methylated genes have been identified in ESCC by a 
single group, with the methylation frequency of some 
TSGs varying widely in different labs, probably due to 
different patient cohorts or detection methods [75] . With the 
use of genome­wide epigenomic approaches [76] , the more 
reliable identification of methylated genes or gene panels 
might improve the early detection and prognosis of 
ESCC in future. 
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